Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1110459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967780

RESUMO

Chronopharmacology of arterial hypertension impacts the long-term cardiovascular risk of hypertensive subjects. Therefore, clinical and computational studies have proposed optimizing antihypertensive medications' dosing time (Ta). However, the causes and mechanisms underlying the Ta-dependency antihypertensive effect have not been elucidated. Here we propose using a Ta- dependent effect model to understand and predict the antihypertensive effect of valsartan and aspirin throughout the day in subjects with grade I or II essential hypertension. The model based on physiological regulation mechanisms includes a periodic function for each parameter that changes significantly after treatment. Circadian variations of parameters depending on the dosing time allowed the determination of regulation mechanisms dependent on the circadian rhythm that were most relevant for the action of each drug. In the case of valsartan, it is the regulation of vasodilation and systemic vascular resistance. In the case of aspirin, the antithrombotic effect generates changes in the sensitivity of systemic vascular resistance and heart rate to changes in physical activity. Dosing time-dependent models predict a more significant effect on systemic vascular resistance and blood pressure when administering valsartan or aspirin at bedtime. However, circadian dependence on the regulation mechanisms showed different sensitivity of their circadian parameters and shapes of functions, presenting different phase shifts and amplitude. Therefore, different mechanisms of action and pharmacokinetic properties of each drug can generate different profiles of Ta-dependence of antihypertensive effect and optimal dosing times.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Valsartana , Aspirina/uso terapêutico , Tetrazóis/farmacologia , Valina/farmacologia , Valina/uso terapêutico , Hipertensão/tratamento farmacológico
2.
PLoS Comput Biol ; 18(11): e1010711, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374862

RESUMO

Blood pressure (BP) follows a circadian variation, increasing during active hours, showing a small postprandial valley and a deeper decrease during sleep. Nighttime reduction of 10-20% relative to daytime BP is defined as a dipper pattern, and a reduction of less than 10%, as a non-dipper pattern. Despite this BP variability, hypertension's diagnostic criteria and therapeutic objectives are usually based on BP average values. Indeed, studies have shown that chrono-pharmacological optimization significantly reduces long-term cardiovascular risk if a BP dipper pattern is maintained. Changes in the effect of antihypertensive medications can be explained by circadian variations in their pharmacokinetics (PK) and pharmacodynamics (PD). Nevertheless, BP circadian variation has been scarcely included in PK-PD models of antihypertensive medications to date. In this work, we developed PK-PD models that include circadian rhythm to find the optimal dosing time (Ta) of first-line antihypertensive medications for dipper and non-dipper patterns. The parameters of the PK-PD models were estimated using global optimization, and models were selected according to the lowest corrected Akaike information criterion value. Simultaneously, sensitivity and identifiability analysis were performed to determine the relevance of the parameters and establish those that can be estimated. Subsequently, Ta parameters were optimized to maximize the effect on BP average, BP peaks, and sleep-time dip. As a result, all selected models included at least one circadian PK component, and circadian parameters had the highest sensitivity. Furthermore, Ta with which BP>130/80 mmHg and a dip of 10-20% are achieved were proposed when possible. We show that the optimal Ta depends on the therapeutic objective, the medication, and the BP profile. Therefore, our results suggest making chrono-pharmacological recommendations in a personalized way.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ritmo Circadiano/fisiologia , Monitorização Ambulatorial da Pressão Arterial , Hipertensão/tratamento farmacológico , Pressão Sanguínea/fisiologia
3.
Cells ; 11(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326371

RESUMO

The intake of food with high levels of saturated fatty acids (SatFAs) is associated with the development of obesity and insulin resistance. SatFAs, such as palmitic (PA) and stearic (SA) acids, have been shown to accumulate in the hypothalamus, causing several pathological consequences. Autophagy is a lysosomal-degrading pathway that can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Previous studies showed that PA impairs macroautophagy function and insulin response in hypothalamic proopiomelanocortin (POMC) neurons. Here, we show in vitro that the exposure of POMC neurons to PA or SA also inhibits CMA, possibly by decreasing the total and lysosomal LAMP2A protein levels. Proteomics of lysosomes from PA- and SA-treated cells showed that the inhibition of CMA could impact vesicle formation and trafficking, mitochondrial components, and insulin response, among others. Finally, we show that CMA activity is important for regulating the insulin response in POMC hypothalamic neurons. These in vitro results demonstrate that CMA is inhibited by PA and SA in POMC-like neurons, giving an overview of the CMA-dependent cellular pathways that could be affected by such inhibition and opening a door for in vivo studies of CMA in the context of the hypothalamus and obesity.


Assuntos
Autofagia Mediada por Chaperonas , Humanos , Insulina/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacologia
4.
Life (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36675964

RESUMO

Toxins of the OA-group (okadaic acid, OA; dinophysistoxin-1, DTX-1) are the most prevalent in the fjords of southern Chile, and are characterized by their potential harmful effects on aquatic organisms. The present study was carried out to determine the acute toxicity of OA/DTX-1 on oxidative stress parameters in medaka (Oryzias latipes) larvae. Medaka larvae were exposed to different concentrations (1.0-30 µg/mL) of OA/DTX-1 for 96 h to determine the median lethal concentration. The LC50 value after 96 h was 23.5 µg/mL for OA and 16.3 µg/mL for DTX-1 (95% confidence interval, CI was 22.56, 24.43 for OA and 15.42, 17.17 for DTX-1). Subsequently, larvae at 121 hpf were exposed to acute doses (10, 15 and 20 µg/mL OA and 5.0, 7.5 and 11.0 µg/mL DTX-1) for 96 h and every 6 h the corresponding group of larvae was euthanized in order to measure the activity levels of biochemical biomarkers (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx; and glutathione reductase, GR) as well as the levels of oxidative damage (malondialdehyde, MDA; and carbonyl content). Our results showed that acute doses caused a decrease in SOD (≈25%), CAT (≈55%), and GPx and GR (≈35%) activities, while MDA levels and carbonyl content increased significantly at the same OA/DTX-1 concentrations. This study shows that acute exposure to OA-group toxins tends to simultaneously alter the oxidative parameters that induce sustained morphological damage in medaka larvae. DTX-1 stands out as producing greater inhibition of the antioxidant system, leading to increased oxidative damage in medaka larvae. Considering that DTX-1 is the most prevalent HAB toxin in southern Chile, these findings raise the possibility of an important environmental impact on the larval stages of different fish species present in the southern fjords of the South Pacific.

5.
Anal Biochem ; 608: 113904, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800701

RESUMO

Amongst the available methodologies for protein determination, the bicinchoninic acid (BCA) assay highlights for its simplicity, sensitivity, repeatability and reproducibility. Nevertheless, in spite that the general principle behind this methodology is known, there are still unanswered questions regarding the chemistry behind the assay and the experimental conditions commonly employed. The present work explored the kinetics, and the analytical response of the assay to free amino acids, peptides (containing tryptophan and tyrosine), and proteins. Results revealed kinetic profiles characterized by the absence of plateaus, with behaviors depending on the type of the sample. The latter, along with contribution to the BCA index elicited by oxidation products generated at the side chain of tryptophan and tyrosine, as well as pre-oxidized ß-casein, evidenced the presence of complex reaction mechanisms. In spite of such complexity, our results showed that the BCA index is not modulated by the incubation time. This applies for responses producing absorbance intensities (at 562 nm) higher than 0.1. Therefore, we propose that the assay can be applied at shorter incubation times (15 min) than those indicated in manufactures specifications, and usually used by researches and industry (30 min at 37 °C).


Assuntos
Indicadores e Reagentes/química , Proteínas/análise , Quinolinas/química , Aminoácidos/análise , Animais , Humanos , Cinética , Modelos Lineares , Oxirredução , Peptídeos/análise , Reprodutibilidade dos Testes , Espectrofotometria , Fatores de Tempo
6.
Front Mol Neurosci ; 13: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132902

RESUMO

TAR DNA binding protein 43 kDa (TDP-43) is a ribonuclear protein regulating many aspects of RNA metabolism. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) are fatal neurodegenerative diseases with the presence of TDP-43 aggregates in neuronal cells. Chaperone Mediated Autophagy (CMA) is a lysosomal degradation pathway participating in the proteostasis of several cytosolic proteins including neurodegenerative associated proteins. In addition, protein oligomers or aggregates can affect the status of CMA. In this work, we studied the relationship between CMA and the physiological and pathological forms of TDP-43. First, we found that recombinant TDP-43 was specifically degraded by rat liver's CMA+ lysosomes and that endogenous TDP-43 is localized in rat brain's CMA+ lysosomes, indicating that TDP-43 can be a CMA substrate in vivo. Next, by using a previously reported TDP-43 aggregation model, we have shown that wild-type and an aggregate-prone form of TDP-43 are detected in CMA+ lysosomes isolated from cell cultures. In addition, their protein levels increased in cells displaying CMA down-regulation, indicating that these two TDP-43 forms are CMA substrates in vitro. Finally, we observed that the aggregate-prone form of TDP-43 is able to interact with Hsc70, to co-localize with Lamp2A, and to up-regulate the levels of these molecular components of CMA. The latter was followed by an up-regulation of the CMA activity and lysosomal damage. Altogether our data shows that: (i) TDP-43 is a CMA substrate; (ii) CMA can contribute to control the turnover of physiological and pathological forms of TDP-43; and (iii) TDP-43 aggregation can affect CMA performance. Overall, this work contributes to understanding how a dysregulation between CMA and TDP-43 would participate in neuropathological mechanisms associated with TDP-43 aggregation.

7.
Front Oncol ; 10: 614677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643916

RESUMO

Chaperone-mediated autophagy (CMA) represents a specific way of lysosomal protein degradation and contrary to macro and microautophagy is independent of vesicles formation. The role of CMA in different physiopathological processes has been studied for several years. In cancer, alterations of the CMA principal components, Hsc70 and Lamp2A protein and mRNA levels, have been described in malignant cells. However, changes in the expression levels of these CMA components are not always associated with changes in CMA activity and their biological significance must be carefully interpreted case by case. The objective of this review is to discuss whether altering the CMA activity, CMA substrates or CMA components is accurate to avoid cancer progression. In particular, this review will discuss about the evidences in which alterations CMA components Lamp2A and Hsc70 are associated or not with changes in CMA activity in different cancer types. This analysis will help to better understand the role of CMA activity in cancer and to elucidate whether CMA can be considered as target for therapeutics. Further, it will help to define whether the attention of the investigation should be focused on Lamp2A and Hsc70 because they can have an independent role in cancer progression beyond of their participation in altered CMA activity.

8.
Front Physiol ; 11: 536146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536928

RESUMO

Blood pressure in humans presents a circadian variation profile with a morning increase, a small postprandial valley, and a deeper descent during night-time rest. Under certain conditions, the nocturnal decline in blood pressure can be reduced or even reversed (non-dipper), which is related to a significantly worse prognosis than a normal fall pattern (dipper). Despite several advances in recent years, our understanding of blood pressure's temporal structure, its sources and mechanisms is far from complete. In this work, we developed an ordinary differential equation-based mathematical model capable of capturing the circadian rhythm of blood pressure in dipper and non-dipper patients with arterial hypertension. The model was calibrated by means of global optimization, using 24-h data of systolic and diastolic blood pressure, physical activity, heart rate, blood glucose and norepinephrine, obtained from the literature. After fitting the model, the mean of the normalized error for each data point was <0.2%, and confidence intervals indicate that all parameters were identifiable. Sensitivity analysis allowed identifying the most relevant parameters and therefore inferring the most important blood pressure regulatory mechanisms involved in the non-dipper status, namely, increase in sympathetic over parasympathetic nervous tone, lower influence of physical activity on heart rate and greater influence of physical activity and glucose on the systemic vascular resistance. In summary, this model allows explaining the circadian rhythm of blood pressure and deepening the understanding of the underlying mechanisms and interactions integrating the results of previous works.

9.
Redox Biol ; 24: 101207, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31102971

RESUMO

Carbonate radicals (CO3-) are generated by the bicarbonate-dependent peroxidase activity of cytosolic superoxide dismutase (Cu,Zn-SOD, SOD-1). The present work explored the use of bleaching of pyrogallol red (PGR) dye to quantify the rate of CO3- formation from bovine and human SOD-1 (bSOD-1 and hSOD-1, respectively). This approach was compared to previously reported methods using electron paramagnetic resonance spin trapping with DMPO, and the oxidation of ABTS (2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid). The kinetics of PGR consumption elicited by CO3- was followed by visible spectrophotometry. Solutions containing PGR (5-200 µM), SOD-1 (0.3-3 µM), H2O2 (2 mM) in bicarbonate buffer (200 mM, pH 7.4) showed a rapid loss of the PGR absorption band centered at 540 nm. The initial consumption rate (Ri) gave values independent of the initial PGR concentration allowing an estimate to be made of the rate of CO3- release of 24.6 ±â€¯4.3 µM min-1 for 3 µM bSOD-1. Both bSOD-1 and hSOD-1 showed a similar peroxidase activity, with enzymatic inactivation occurring over a period of 20 min. The single Trp residue (Trp32) present in hSOD-1 was rapidly consumed (initial consumption rate 1.2 ±â€¯0.1 µM min-1) with this occurring more rapidly than hSOD-1 inactivation, suggesting that these processes are not directly related. Added free Trp was rapidly oxidized in competition with PGR. These data indicate that PGR reacts rapidly and efficiently with CO3- resulting from the peroxidase activity of SOD-1, and that PGR-bleaching is a simple, fast and cheap method to quantify CO3- release from bSOD-1 and hSOD-1 peroxidase activity.


Assuntos
Bicarbonatos/química , Clareadores/química , Carbonatos/química , Radicais Livres/química , Pirogalol/análogos & derivados , Superóxido Dismutase-1/química , Bicarbonatos/metabolismo , Carbonatos/metabolismo , Radicais Livres/metabolismo , Oxirredução , Pirogalol/química , Análise Espectral , Superóxido Dismutase-1/metabolismo
10.
Horiz. enferm ; 29(2): 164-183, 2018. tab
Artigo em Espanhol | LILACS, BDENF - Enfermagem | ID: biblio-1222771

RESUMO

Este artículo presenta una intervención educativa realizada por alumnas de enfermería de la Pontificia Universidad Católica de Chile, a un grupo de adultos mayores pertenecientes a la comuna de Puente Alto, Santiago de Chile. OBJETIVO: Prevenir el deterioro cognitivo enfocado en la memoria, empoderando a la comunidad en su autocuidado. METODOLOGÍA: La comunidad se conformó por personas de un rango etario entre 60 y 85 años. En la valoración y análisis se utilizó el modelo "Comunidad como Socio" de Anderson y McFarlane, junto a encuestas elaboradas para este trabajo. Se realizó un diagnóstico participativo con el objetivo de definir la necesidad educativa de la comunidad, donde se decidió trabajar el tema "La memoria y la prevención de su deterioro en adultos mayores" en seis sesiones de una duración de 60 minutos cada una. Las intervenciones y actividades realizadas tomaron como base el modelo Educación Participativa para Adultos de Jane Vella. RESULTADOS: Los participantes adquirieron conocimientos sobre la temática tratada en las sesiones y lograron incrementar su autoeficacia. El programa educativo los impulsó a un autocuidado consciente y la prevención del deterioro cognitivo. CONCLUSIÓN: Las metodologías participativas facilitaron a los integrantes a tomar un rol protagónico en la construcción de su propio conocimiento, posibilitando su integración en la vida diaria.


This article presents an educational intervention carried out by nursing students of Pontificia Universidad Católica de Chile, to a group of older adults belonging to Puente Alto, Santiago, Chile. OBJECTIVE: To prevent cognitive impairment focused on memory, empowering the community in its self-care. METHODOLOGY: The community was formed by people of an age range between 60 and 85 years. In the assessment and analysis the Community as Partner model by Anderson and McFarlane was used, along with surveys developed for this work. A participatory diagnosis was made in order to define the educational needs of the community, six sessions were held for 60 minutes each, where the theme was "Memory and prevention of its deterioration in older adults". The interventions and activities were based on Jane Vella's Participative Adult Education model. RESULTS: Participants acquired knowledge about the topics dealt within the sessions and were able to increase their self-effectiveness. The educational program promoted conscious self-care and prevention of cognitive impairment. CONCLUSION: Participatory methodologies facilitate members to take a leading role in building their own knowledge, enabling their integration into everyday life.


Assuntos
Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Autocuidado/métodos , Educação em Saúde , Disfunção Cognitiva/prevenção & controle , Chile , Aprendizagem/classificação , Memória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...