Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 63(4): 633-650, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35691996

RESUMO

A good knowledge of the genome properties of the populations makes it possible to optimize breeding methods, in particular genomic selection (GS). In oil palm (Elaeis guineensis Jacq), the world's main source of vegetable oil, this would provide insight into the promising GS results obtained so far. The present study considered two complex breeding populations, Deli and La Mé, with 943 individuals and 7324 single-nucleotide polymorphisms (SNPs) from genotyping-by-sequencing. Linkage disequilibrium (LD), haplotype sharing, effective size (Ne), and fixation index (Fst) were investigated. A genetic linkage map spanning 1778.52 cM and with a recombination rate of 2.85 cM/Mbp was constructed. The LD at r2=0.3, considered the minimum to get reliable GS results, spanned over 1.05 cM/0.22 Mbp in Deli and 0.9 cM/0.21 Mbp in La Mé. The significant degree of differentiation existing between Deli and La Mé was confirmed by the high Fst value (0.53), the pattern of correlation of SNP heterozygosity and allele frequency among populations, and the decrease of persistence of LD and of haplotype sharing among populations with increasing SNP distance. However, the level of resemblance between the two populations over short genomic distances (correlation of r values between populations >0.6 for SNPs separated by <0.5 cM/1 kbp and percentage of common haplotypes >40% for haplotypes <3600 bp/0.20 cM) likely explains the superiority of GS models ignoring the parental origin of marker alleles over models taking this information into account. The two populations had low Ne (<5). Population-specific genetic maps and reference genomes are recommended for future studies.


Assuntos
Arecaceae , Melhoramento Vegetal , Alelos , Arecaceae/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
2.
Mol Genet Genomics ; 297(2): 523-533, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166935

RESUMO

Genomic selection (GS) is a method of marker-assisted selection revolutionizing crop improvement, but it can still be optimized. For hybrid breeding between heterozygote parents of different populations or species, specific aspects can be considered to increase GS accuracy: (1) training population genotyping, i.e., only genotyping the hybrid parents or also a sample of hybrid individuals, and (2) marker effects modeling, i.e., using population-specific effects of single nucleotide polymorphism alleles model (PSAM) or across-population SNP genotype model (ASGM). Here, this was investigated empirically for the prediction of the performances of oil palm hybrids for yield traits. The GS model was trained on 352 hybrid crosses and validated on 213 independent hybrid crosses. The training and validation hybrid parents and 399 training hybrid individuals were genotyping by sequencing. Despite the small proportion of hybrid individuals genotyped and low parental heterozygosity, GS prediction accuracy increased on average by 5% (range 1.4-31.3%, depending on trait and model) when training was done using genomic data on hybrids and parents compared with only parental genomic data. With ASGM, GS prediction accuracy increased on average by 3% (- 10.2 to 40%, depending on trait and genotyping strategy) compared with PSAM. We conclude that the best GS strategy for oil palm is to aggregate genomic data of parents and hybrid individuals and to ignore the parental origin of marker alleles (ASGM). To gain a better insight into these results, future studies should examine the respective effect of capturing genetic variability within crosses and taking segregation distortion into account when genotyping hybrid individuals, and investigate the factors controlling the relative performances of ASGM and PSAM in hybrid crops.


Assuntos
Arecaceae , Melhoramento Vegetal , Arecaceae/genética , Genômica , Genótipo , Heterozigoto , Humanos , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
3.
ISME J ; 15(6): 1695-1708, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452475

RESUMO

The vertical flux of marine snow particles significantly reduces atmospheric carbon dioxide concentration. In the mesopelagic zone, a large proportion of the organic carbon carried by sinking particles dissipates thereby escaping long term sequestration. Particle associated prokaryotes are largely responsible for such organic carbon loss. However, links between this important ecosystem flux and ecological processes such as community development of prokaryotes on different particle fractions (sinking vs. non-sinking) are yet virtually unknown. This prevents accurate predictions of mesopelagic organic carbon loss in response to changing ocean dynamics. Using combined measurements of prokaryotic heterotrophic production rates and species richness in the North Atlantic, we reveal that carbon loss rates and associated microbial richness are drastically different with particle fractions. Our results demonstrate a strong negative correlation between prokaryotic carbon losses and species richness. Such a trend may be related to prokaryotes detaching from fast-sinking particles constantly enriching non-sinking associated communities in the mesopelagic zone. Existing global scale data suggest this negative correlation is a widespread feature of mesopelagic microbes.


Assuntos
Ecossistema , Células Procarióticas , Sedimentos Geológicos , Processos Heterotróficos , Água do Mar
4.
Mol Breed ; 41(9): 53, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309398

RESUMO

Basal stem rot caused by Ganoderma boninense is the major threat to oil palm cultivation in Southeast Asia, which accounts for 80% of palm oil production worldwide, and this disease is increasing in Africa. The use of resistant planting material as part of an integrated pest management of this disease is one sustainable solution. However, breeding for Ganoderma resistance requires long-term and costly research, which could greatly benefit from marker-assisted selection (MAS). In this study, we evaluated the effectiveness of an in silico genetic mapping approach that took advantage of extensive data recorded in an ongoing breeding program. A pedigree-based QTL mapping approach applied to more than 10 years' worth of data collected during pre-nursery tests revealed the quantitative nature of Ganoderma resistance and identified underlying loci segregating in genetic diversity that is directly relevant for the breeding program supporting the study. To assess the consistency of QTL effects between pre-nursery and field environments, information was collected on the disease status of the genitors planted in genealogical gardens and modeled with pre-nursery-based QTL genotypes. In the field, individuals were less likely to be infected with Ganoderma when they carried more favorable alleles at the pre-nursery QTL. Our results pave the way for a MAS of Ganoderma resistant and high yielding planting material, and the provided proof-of-concept of this efficient and cost-effective approach could motivate similar studies based on diverse breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01246-9.

5.
Plant Sci ; 299: 110547, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32900451

RESUMO

The prediction of clonal genetic value for yield is challenging in oil palm (Elaeis guineensis Jacq.). Currently, clonal selection involves two stages of phenotypic selection (PS): ortet preselection on traits with sufficient heritability among a small number of individuals in the best crosses in progeny tests, and final selection on performance in clonal trials. The present study evaluated the efficiency of genomic selection (GS) for clonal selection. The training set comprised almost 300 Deli × La Mé crosses phenotyped for eight palm oil yield components and the validation set 42 Deli × La Mé ortets. Genotyping-by-sequencing (GBS) revealed 15,054 single nucleotide polymorphisms (SNP). The effects of the SNP dataset (density and percentage of missing data) and two GS modeling approaches, ignoring (ASGM) and considering (PSAM) the parental origin of alleles, were assessed. The results showed prediction accuracies ranging from 0.08 to 0.70 for ortet candidates without data records, depending on trait, SNP dataset and modeling. ASGM was better (on average slightly more accurate, less sensitive to SNP dataset and simpler), although PSAM appeared interesting for a few traits. With ASGM, the number of SNPs had to reach 7,000, while the percentage of missing data per SNP was of secondary importance, and GS prediction accuracies were higher than those of PS for most of the traits. Finally, this makes possible two practical applications of GS, that will increase genetic progress by improving ortet preselection before clonal trials: (1) preselection at the mature stage on all yield components jointly using ortet genotypes and phenotypes, and (2) genomic preselection on more yield components than PS, among a large population of the best possible crosses at nursery stage.


Assuntos
Arecaceae/genética , Genoma de Planta , Hibridização Genética , Melhoramento Vegetal , Seleção Genética , Genômica
6.
BMC Genomics ; 18(1): 839, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096603

RESUMO

BACKGROUND: There is great potential for the genetic improvement of oil palm yield. Traditional progeny tests allow accurate selection but limit the number of individuals evaluated. Genomic selection (GS) could overcome this constraint. We estimated the accuracy of GS prediction of seven oil yield components using A × B hybrid progeny tests with almost 500 crosses for training and 200 crosses for independent validation. Genotyping-by-sequencing (GBS) yielded +5000 single nucleotide polymorphisms (SNPs) on the parents of the crosses. The genomic best linear unbiased prediction method gave genomic predictions using the SNPs of the training and validation sets and the phenotypes of the training crosses. The practical impact was illustrated by quantifying the additional bunch production of the crosses selected in the validation experiment if genomic preselection had been applied in the parental populations before progeny tests. RESULTS: We found that prediction accuracies for cross values plateaued at 500 to 2000 SNPs, with high (0.73) or low (0.28) values depending on traits. Similar results were obtained when parental breeding values were predicted. GS was able to capture genetic differences within parental families, requiring at least 2000 SNPs with less than 5% missing data, imputed using pedigrees. Genomic preselection could have increased the selected hybrids bunch production by more than 10%. CONCLUSIONS: Finally, preselection for yield components using GBS is the first possible application of GS in oil palm. This will increase selection intensity, thus improving the performance of commercial hybrids. Further research is required to increase the benefits from GS, which should revolutionize oil palm breeding.


Assuntos
Arecaceae/genética , Genômica , Técnicas de Genotipagem , Hibridização Genética , Análise de Sequência , Polimorfismo de Nucleotídeo Único
7.
Aquat Toxicol ; 193: 40-49, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29032352

RESUMO

Over the past years, several studies have been dedicated to understanding the physiological ability of the vent mussel Bathymodiolus azoricus to overcome the high metal concentrations present in their surrounding hydrothermal environment. Potential deep-sea mining activities at Azores Triple junction hydrothermal vent deposits would inevitably lead to the emergence of new fluid sources close to mussel beds, with consequent emission of high metal concentrations and potential resolubilization of Cu from minerals formed during the active phase of the vent field. Copper is an essential metal playing a key role in the activation of metalloenzymes and metalloproteins responsible for important cellular metabolic processes and tissue homeostasis. However, excessive intracellular amounts of reactive Cu ions may cause irreversible damages triggering possible cell apoptosis. In the present study, B. azoricus was exposed to increasing concentrations of Cu for 96h in conditions of temperature and hydrostatic pressure similar to those experienced at the Lucky Strike hydrothermal vent field. Specimens were kept in 1L flasks, exposed to four Cu concentrations: 0µg/L (control), 300, 800 and 1600µg/L and pressurized to 1750bar. We addressed the question of how increased Cu concentration would affect the function of antioxidant defense proteins and expression of antioxidant and immune-related genes in B. azoricus. Both antioxidant enzymatic activities and gene expression were examined in gills, mantle and digestive gland tissues of exposed vent mussels. Our study reveals that stressful short-term Cu exposure has a strong effect on molecular metabolism of the hydrothermal vent mussel, especially in gill tissue. Initially, both the stress caused by unpressurization or by Cu exposure was associated with high antioxidant enzyme activities and tissue-specific transcriptional up-regulation. However, mussels exposed to increased Cu concentrations showed both antioxidant and immune-related gene suppression. Under a mining activity scenario, the release of an excess of dissolved Cu to the vent environment may cause serious changes in cellular defense mechanisms of B. azoricus. This outcome, while adding to our knowledge of Cu toxicity, highlights the potentially deleterious impacts of mining activities on the physiology of deep-sea organisms.


Assuntos
Cobre/toxicidade , Fontes Hidrotermais , Mytilidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Peroxidação de Lipídeos/genética , Mineração , Mytilidae/metabolismo , Estresse Oxidativo/genética , Regulação para Cima
8.
G3 (Bethesda) ; 7(6): 1683-1692, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592650

RESUMO

Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease.


Assuntos
Arecaceae/genética , Arecaceae/microbiologia , Resistência à Doença/genética , Ganoderma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Animais , Cruzamento , Mapeamento Cromossômico , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Haplótipos , Camundongos , Óleo de Palmeira , Linhagem , Fenótipo , Característica Quantitativa Herdável
9.
Front Microbiol ; 8: 854, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611732

RESUMO

Oligonucleotide probes are increasingly being used to characterize natural microbial assemblages by Tyramide Signal Amplification-Fluorescent in situ Hybridization (TSA-FISH, or CAtalysed Reporter Deposition CARD-FISH). In view of the fast-growing rRNA databases, we re-evaluated the in silico specificity of eleven bacterial and eukaryotic probes and competitor frequently used for the quantification of marine picoplankton. We performed tests on cell cultures to decrease the risk for non-specific hybridization, before they are used on environmental samples. The probes were confronted to recent databases and hybridization conditions were tested against target strains matching perfectly with the probes, and against the closest non-target strains presenting one to four mismatches. We increased the hybridization stringency from 55 to 65% formamide for the Eub338+EubII+EubIII probe mix to be specific to the Eubacteria domain. In addition, we found that recent changes in the Gammaproteobacteria classification decreased the specificity of Gam42a probe, and that the Roseo536R and Ros537 probes were not specific to, and missed part of the Roseobacter clade. Changes in stringency conditions were important for bacterial probes; these induced, respectively, a significant increase, in Eubacteria and Roseobacter and no significant changes in Gammaproteobacteria concentrations from the investigated natural environment. We confirmed the eukaryotic probes original conditions, and propose the Euk1209+NChlo01+Chlo02 probe mix to target the largest picoeukaryotic diversity. Experiences acquired through these investigations leads us to propose the use of seven steps protocol for complete FISH probe specificity check-up to improve data quality in environmental studies.

10.
PLoS One ; 11(3): e0150827, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958844

RESUMO

To understand the impact of the northwestern Azores Current Front (NW-AzC/AzF) system on HCO3--and N2-fixation activities and unicellular diazotrophic cyanobacteria (UCYN) distribution, we combined geochemical and biological approaches from the oligotrophic surface to upper mesopelagic waters. N2-fixation was observed to sustain 45-85% of the HCO3--fixation in the picoplanktonic fraction performing 47% of the total C-fixation at the deep chlorophyll maximum north and south of the AzF. N2-fixation rates as high as 10.9 µmol N m-3 d-1 and surface nitrate δ15N as low as 2.7‰ were found in the warm (18-24°C), most saline (36.5-37.0) and least productive waters south of the AzF, where UCYN were the least abundant. However, picoplanktonic UCYN abundances up to 55 cells mL-1 were found at 45-200m depths in the coolest nutrient-rich waters north of the AzF. In this area, N2-fixation rates up to 4.5 µmol N m-3 d-1 were detected, associated with depth-integrated H13CO3--fixation rates at least 50% higher than observed south of the AzF. The numerous eddies generated at the NW-AzC/AzF seem to enhance exchanges of plankton between water masses, as well as vertical and horizontal diapycnal diffusion of nutrients, whose increase probably enhances the growth of diazotrophs and the productivity of C-fixers.


Assuntos
Cianobactérias/metabolismo , Fixação de Nitrogênio , Açores , Carbono/análise , Geografia , Nitrogênio/análise , Isótopos de Nitrogênio , Tamanho da Partícula , Material Particulado/análise , Fósforo/análise , Água do Mar/microbiologia , Movimentos da Água
11.
BMC Genomics ; 16: 798, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472667

RESUMO

BACKGROUND: Elaeis guineensis is the world's leading source of vegetable oil, and the demand is still increasing. Oil palm breeding would benefit from marker-assisted selection but genetic studies are scarce and inconclusive. This study aims to identify genetic bases of oil palm production using a pedigree-based approach that is innovative in plant genetics. RESULTS: A quantitative trait locus (QTL) mapping approach involving two-step variance component analysis was employed using phenotypic data on 30852 palms from crosses between more than 300 genotyped parents of two heterotic groups. Genome scans were performed at parental level by modeling QTL effects as random terms in linear mixed models with identity-by-descent (IBD) kinship matrices. Eighteen QTL regions controlling production traits were identified among a large genetically diversified sample from breeding program. QTL patterns depended on the genetic origin, with only one region shared between heterotic groups. Contrasting effects of QTLs on bunch number and weights reflected the close negative correlation between the two traits. CONCLUSIONS: The pedigree-based approach using data from ongoing breeding programs is a powerful, relevant and economic approach to map QTLs. Genetic determinisms contributing to heterotic effects have been identified and provide valuable information for orienting oil palm breeding strategies.


Assuntos
Arecaceae/genética , Ligação Genética , Repetições de Microssatélites/genética , Locos de Características Quantitativas/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Genótipo , Modelos Genéticos , Óleo de Palmeira , Linhagem , Óleos de Plantas
12.
Theor Appl Genet ; 128(3): 397-410, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25488416

RESUMO

KEY MESSAGE: Genomic selection empirically appeared valuable for reciprocal recurrent selection in oil palm as it could account for family effects and Mendelian sampling terms, despite small populations and low marker density. Genomic selection (GS) can increase the genetic gain in plants. In perennial crops, this is expected mainly through shortened breeding cycles and increased selection intensity, which requires sufficient GS accuracy in selection candidates, despite often small training populations. Our objective was to obtain the first empirical estimate of GS accuracy in oil palm (Elaeis guineensis), the major world oil crop. We used two parental populations involved in conventional reciprocal recurrent selection (Deli and Group B) with 131 individuals each, genotyped with 265 SSR. We estimated within-population GS accuracies when predicting breeding values of non-progeny-tested individuals for eight yield traits. We used three methods to sample training sets and five statistical methods to estimate genomic breeding values. The results showed that GS could account for family effects and Mendelian sampling terms in Group B but only for family effects in Deli. Presumably, this difference between populations originated from their contrasting breeding history. The GS accuracy ranged from -0.41 to 0.94 and was positively correlated with the relationship between training and test sets. Training sets optimized with the so-called CDmean criterion gave the highest accuracies, ranging from 0.49 (pulp to fruit ratio in Group B) to 0.94 (fruit weight in Group B). The statistical methods did not affect the accuracy. Finally, Group B could be preselected for progeny tests by applying GS to key yield traits, therefore increasing the selection intensity. Our results should be valuable for breeding programs with small populations, long breeding cycles, or reduced effective size.


Assuntos
Arecaceae/genética , Cruzamento , Seleção Genética , Genética Populacional , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Modelos Estatísticos
13.
Artigo em Inglês | MEDLINE | ID: mdl-22426039

RESUMO

Estuaries of tropical developing countries suffering from severe droughts induced by climate change are habitats to fish, which face drastic salinity variations and the contact with pollutants. The Western Africa tilapia Sarotherodon melanotheron is highly resistant to hypersalinity, but the effect of human-released xenobiotics on its adaptation is barely known. Controlled experiments were conducted to observe S. melanotheron gill adaptation to abrupt salinity variations in the presence of waterborne DDT, at concentrations detected in their natural habitat. The gills appeared as an important site of DDT conversion to DDD and/or depuration. A 12-days DDT exposure resulted in decreased gill epithelium thickness at all salinities (from fresh- to hypersaline-water), and the structure of gills from freshwater fish was particularly altered, relative to controls. No unbalance in tilapia blood osmolality was observed following DDT exposure, which however caused a decrease in branchial Na(+)-K(+)-ATPase (NKA) activity. Gill cellular NKA expression was reduced in salt-water, together with the expression of the CFTR chloride channel in hypersaline water. Although S. melanotheron seems very resistant (especially in seawater) to short-term waterborne DDT contamination, the resulting alterations of the gill tissue, cells and enzymes might affect longer term respiration, toxicant depuration and/or osmoregulation in highly fluctuating salinities.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , DDT/toxicidade , Brânquias/efeitos dos fármacos , Salinidade , Tilápia/fisiologia , África Ocidental , Animais , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ecossistema , Epitélio/metabolismo , Epitélio/fisiologia , Água Doce , Brânquias/metabolismo , Brânquias/fisiologia , Concentração Osmolar , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Tilápia/metabolismo , Poluentes Químicos da Água/toxicidade , Equilíbrio Hidroeletrolítico/fisiologia , Xenobióticos/toxicidade
14.
Mar Environ Res ; 70(3-4): 264-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20605205

RESUMO

Bathymodiolus azoricus, thriving at Mid-Atlantic Ridge deep vents, benefits from a symbiosis with methane- and sulphide-oxidising (MOX and SOX) bacteria, and feeds on particulate and dissolved organic matter. To investigate the temporal evolution in their nutrition adult mussels were collected from one location at the Menez Gwen vent site (817 m depth) on four occasions between 2006 and 2007 and studied using different techniques, including stable isotope analyses and FISH. Gill and mantle tissues delta13C and delta15N signatures varied by 2-3 per thousand during the year and these variations were linked to fluctuations in tissue condition index, C and N contents and SOX/MOX volume ratios as quantified by 3D-FISH. October and January mussels presented a particularly poor condition, possibly related with the prolonged summer period of low sea-surface primary production and/or with the stress of the transplant to acoustically retrievable cages for the October mussels, and with their reproductive state in January mussels, since they were spawning. Our results point to the possibility that May mussels benefited from a pulse of sinking sea-surface plankton material. Results underline the dependency of stable isotopic signatures on the physiological state of the mussel at the time of collection, and on the type of tissue analyzed.


Assuntos
Bivalves/fisiologia , Animais , Bivalves/química , Bivalves/metabolismo , Radioisótopos de Carbono/análise , Monitoramento Ambiental/métodos , Brânquias/química , Hibridização in Situ Fluorescente , Radioisótopos de Nitrogênio/análise , Oceanos e Mares , Fatores de Tempo
15.
Artigo em Inglês | MEDLINE | ID: mdl-18387836

RESUMO

The deep-sea hydrothermal vent mussel Bathymodiolus azoricus has been the subject of several studies aimed at understanding the physiological adaptations that vent animals have developed in order to cope with the particular physical and chemical conditions of hydrothermal environments. In spite of reports describing successful procedures to maintain vent mussels under laboratory conditions at atmospheric pressure, few studies have described the mussel's physiological state after a long period in aquaria. In the present study, we investigate changes in mucocytes and hemocytes in B. azoricus over the course of several months after deep-sea retrieval. The visualization of granules of mucopolysaccharide or glycoprotein was made possible through their inherent auto-fluorescent property and the Alcian blue-Periodic Acid Schiff staining method. The density and distribution of droplets of mucus-like granules was observed at the ventral end of lamellae during acclimatization period. The mucus-like granules were greatly reduced after 3 months and nearly absent after 6 months of aquarium conditions. Additionally, we examined the depletion of endosymbiont bacteria from gill tissues, which typically occurs within a few weeks in sea water under laboratory conditions. The physiological state of B. azoricus after 6 months of acclimatization was also examined by means of phagocytosis assays using hemocytes. Hemocytes from mussels held in aquaria up to 6 months were still capable of phagocytosis but to a lesser extent when compared to the number of ingested yeast particles per phagocytic hemocytes from freshly collected vent mussels. We suggest that the changes in gill mucopolysaccharides and hemocyte glycoproteins, the endosymbiont abundance in gill tissues and phagocytosis are useful health criteria to assess long term maintenance of B. azoricus in aquaria. Furthermore, the laboratory set up to which vent mussels were acclimatized is an applicable system to study physiological reactions such as hemocyte immunocompetence even in the absence of the high hydrostatic pressure found at deep-sea vent sites.


Assuntos
Bivalves/anatomia & histologia , Bivalves/metabolismo , Brânquias/anatomia & histologia , Brânquias/metabolismo , Hemócitos/citologia , Hemócitos/metabolismo , Animais , Carboidratos/biossíntese , Fagocitose , Pressão , Fatores de Tempo
16.
ISME J ; 2(3): 284-92, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18219282

RESUMO

Dual endosymbioses involving methane- and sulphur-oxidizing bacteria occur in the gills of several species of mussels from deep-sea hydrothermal vents and cold seeps. Variations of total and relative abundances of symbionts depending on local environmental parameters are not yet understood, due to a lack of reliable quantification of bacteria in the host tissue. Here, we report the first attempt to quantify volumes occupied by each type of symbiont in bacteriocyte sections from a vent mussel, Bathymodiolus azoricus, using fluorescence in situ hybridization (FISH) coupled to three dimentional microscopy and image analysis carried out by a dedicated software, which we developed. Bacteriocytes from mussels recovered at different vent sites displayed significantly different abundances of bacteria. Specimens kept in aquaria at atmospheric pressure and exposed to an artificial pulse of sulphur displayed an increase in absolute and relative abundance of sulphur oxidizers within their bacteriocytes. Distributions of all measured parameters fitted normal distributions, indicating that bacteriocytes from a specimen tend to display similar behaviours. This study shows that symbiont volume quantification is tractable using 3D FISH, and confirms the impact of local environmental parameters on symbiont abundances.


Assuntos
Bactérias/isolamento & purificação , Células Epiteliais/microbiologia , Brânquias/microbiologia , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente/métodos , Mytilidae/microbiologia , Animais , Bactérias/genética , Técnicas Bacteriológicas , Brânquias/citologia , Metano/metabolismo , Oxirredução , Água do Mar , Enxofre/metabolismo , Simbiose
17.
Anal Biochem ; 343(2): 244-55, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15963938

RESUMO

Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.


Assuntos
Corantes Fluorescentes/síntese química , Ubiquitina/análogos & derivados , Ubiquitina/síntese química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Endopeptidases/química , Endopeptidases/metabolismo , Corantes Fluorescentes/química , Cinética , Lisina/química , Lisina/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Fatores de Tempo , Ubiquitina/química , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
18.
J Biomol Screen ; 9(7): 569-77, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15475476

RESUMO

The beta isoform of the heat shock protein 90 (Hsp90beta) is a cellular chaperone required for the maturation of key proteins involved in growth response to extracellular factors as well as oncogenic transformation of various cell types. Compounds that inhibit the function of Hsp90beta are thus believed to have potential as novel anticancer drugs. To date, 2 fungal metabolites are known to inhibit Hsp90beta. However, insolubility and liver toxicity restrict the clinical use of these molecules. The limitation to identify novel and safe Hsp90beta inhibitors is that presently no suitable high-throughput screening assay is available. Here, the authors present the development of a homogenous assay based on 2-dimensional fluorescence intensity distribution analysis of tetramethyl-rhodamine (TAMRA)-labeled radicicol bound to Hsp90beta. Furthermore, the assay has been shown to be compatible with the confocal nanoscreening platform Mark II from Evotec-Technologies and can therefore be used for miniaturized high-throughput screening. The applied detection technology provides critical information about the nature of biomolecular interaction at the thermodynamic equilibrium, such as affinity constants and stoichiometric parameters of the binding. The assay is used to identify small molecular weight compounds displacing TAMRA-radicicol. Such compounds are believed to be important molecules in the discovery of novel anticancer drugs.


Assuntos
Bioensaio/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Fluorescência , Humanos , Cinética , Lactonas/química , Macrolídeos , Miniaturização , Estrutura Molecular , Nanotecnologia , Ligação Proteica , Ensaio Radioligante
19.
J Biol Chem ; 279(47): 49330-7, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15337744

RESUMO

The crystal structure of the ligand binding domain (LBD) of the estrogen-related receptor alpha (ERRalpha, NR3B1) complexed with a coactivator peptide from peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) reveals a transcriptionally active conformation in the absence of a ligand. This is the first x-ray structure of ERRalpha LBD, solved to a resolution of 2.5 A, and the first structure of a PGC-1alpha complex. The putative ligand binding pocket (LBP) of ERRalpha is almost completely occupied by side chains, in particular with the bulky side chain of Phe328 (corresponding to Ala272 in ERRgamma and Ala350 in estrogen receptor alpha). Therefore, a ligand of a size equivalent to more than approximately 4 carbon atoms could only bind in the LBP, if ERRalpha would undergo a major conformational change (in particular the ligand would displace H12 from its agonist position). The x-ray structure thus provides strong evidence for ligand-independent transcriptional activation by ERRalpha. The interactions of PGC-1alpha with ERRalpha also reveal for the first time the atomic details of how a coactivator peptide containing an inverted LXXLL motif (namely a LLXYL motif) binds to a LBD. In addition, we show that a PGC-1alpha peptide containing this nuclear box motif from the L3 site binds ERRalpha LBD with a higher affinity than a peptide containing a steroid receptor coactivator-1 motif and that the affinity is further enhanced when all three leucine-rich regions of PGC-1alpha are present.


Assuntos
Proteínas de Choque Térmico/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores de Estrogênio/química , Fatores de Transcrição/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Animais , Sítios de Ligação , Carbono/química , Linhagem Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Histona Acetiltransferases , Humanos , Insetos , Leucina/química , Ligantes , Modelos Moleculares , Mutação , Coativador 1 de Receptor Nuclear , Peptídeos/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Temperatura , Receptor ERRalfa Relacionado ao Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...