Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(9): e1010741, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070309

RESUMO

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.


Assuntos
COVID-19 , Animais , COVID-19/complicações , Cricetinae , Furões , Humanos , Mesocricetus , Camundongos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
2.
Sci Rep ; 11(1): 14536, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267262

RESUMO

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) hospitalizations and deaths disportionally affect males and older ages. Here we investigated the impact of male sex and age comparing sex-matched or age-matched ferrets infected with SARS-CoV-2. Differences in temperature regulation was identified for male ferrets which was accompanied by prolonged viral replication in the upper respiratory tract after infection. Gene expression analysis of the nasal turbinates indicated that 1-year-old female ferrets had significant increases in interferon response genes post infection which were delayed in males. These results provide insight into COVID-19 and suggests that older males may play a role in viral transmission due to decreased antiviral responses.


Assuntos
COVID-19/virologia , Furões/virologia , Interferons/metabolismo , Fatores Etários , Animais , Anticorpos Antivirais , COVID-19/metabolismo , Modelos Animais de Doenças , Feminino , Furões/metabolismo , Interações entre Hospedeiro e Microrganismos , Interferons/genética , Masculino , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Fatores Sexuais , Carga Viral , Replicação Viral
3.
Viruses ; 13(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920917

RESUMO

Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.


Assuntos
Furões/virologia , Imunidade , Infecções por Orthomyxoviridae/virologia , Fatores Etários , Animais , Feminino , Humanos , Vacinas contra Influenza , Gravidez , Fatores de Risco , Vacinação
4.
bioRxiv ; 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33469587

RESUMO

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) hospitalizations and deaths disportionally affect males and the elderly. Here we investigated the impact of male sex and age by infecting adult male, aged male, and adult female ferrets with SARS-CoV-2. Aged male ferrets had a decrease in temperature which was accompanied by prolonged viral replication with increased pathology in the upper respiratory tract after infection. Transcriptome analysis of the nasal turbinates and lungs indicated that female ferrets had significant increases in interferon response genes (OASL, MX1, ISG15, etc.) on day 2 post infection which was delayed in aged males. In addition, genes associated with taste and smell such as RTP1, CHGA, and CHGA1 at later time points were upregulated in males but not in females. These results provide insight into COVID-19 and suggests that older males may play a role in viral transmission due to decreased antiviral responses.

5.
Vaccines (Basel) ; 8(3)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961707

RESUMO

Influenza virus infection causes severe respiratory illness in people worldwide, disproportionately affecting infants. The immature respiratory tract coupled with the developing immune system, and lack of previous exposure to the virus is thought to synergistically play a role in the increased disease severity in younger age groups. No influenza vaccines are available for those under six months, although maternal influenza immunization is recommended. In children aged six months to two years, vaccine immunogenicity is dampened compared to older children and adults. Unlike older children and adults, the infant immune system has fewer antigen-presenting cells and soluble immune factors. Paradoxically, we know that a person's first infection with the influenza virus during infancy or childhood leads to the establishment of life-long immunity toward that particular virus strain. This is called influenza imprinting. We contend that by understanding the influenza imprinting event in the context of the infant immune system, we will be able to design more effective influenza vaccines for both infants and adults. Working through the lens of imprinting, using infant influenza animal models such as mice and ferrets which have proven useful for infant immunity studies, we will gain a better understanding of imprinting and its implications regarding vaccine design. This review examines literature regarding infant immune and respiratory development, current vaccine strategies, and highlights the importance of research into the imprinting event in infant animal models to develop more effective and protective vaccines for all including young children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...