Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
BMC Med Inform Decis Mak ; 24(1): 116, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698395

RESUMO

BACKGROUND: Machine learning (ML) classifiers are increasingly used for predicting cardiovascular disease (CVD) and related risk factors using omics data, although these outcomes often exhibit categorical nature and class imbalances. However, little is known about which ML classifier, omics data, or upstream dimension reduction strategy has the strongest influence on prediction quality in such settings. Our study aimed to illustrate and compare different machine learning strategies to predict CVD risk factors under different scenarios. METHODS: We compared the use of six ML classifiers in predicting CVD risk factors using blood-derived metabolomics, epigenetics and transcriptomics data. Upstream omic dimension reduction was performed using either unsupervised or semi-supervised autoencoders, whose downstream ML classifier performance we compared. CVD risk factors included systolic and diastolic blood pressure measurements and ultrasound-based biomarkers of left ventricular diastolic dysfunction (LVDD; E/e' ratio, E/A ratio, LAVI) collected from 1,249 Finnish participants, of which 80% were used for model fitting. We predicted individuals with low, high or average levels of CVD risk factors, the latter class being the most common. We constructed multi-omic predictions using a meta-learner that weighted single-omic predictions. Model performance comparisons were based on the F1 score. Finally, we investigated whether learned omic representations from pre-trained semi-supervised autoencoders could improve outcome prediction in an external cohort using transfer learning. RESULTS: Depending on the ML classifier or omic used, the quality of single-omic predictions varied. Multi-omics predictions outperformed single-omics predictions in most cases, particularly in the prediction of individuals with high or low CVD risk factor levels. Semi-supervised autoencoders improved downstream predictions compared to the use of unsupervised autoencoders. In addition, median gains in Area Under the Curve by transfer learning compared to modelling from scratch ranged from 0.09 to 0.14 and 0.07 to 0.11 units for transcriptomic and metabolomic data, respectively. CONCLUSIONS: By illustrating the use of different machine learning strategies in different scenarios, our study provides a platform for researchers to evaluate how the choice of omics, ML classifiers, and dimension reduction can influence the quality of CVD risk factor predictions.


Assuntos
Doenças Cardiovasculares , Aprendizado de Máquina , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Fatores de Risco de Doenças Cardíacas , Adulto , Metabolômica , Idoso , Fatores de Risco , Medição de Risco , Finlândia , Multiômica
2.
Proteomics ; : e2300606, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602226

RESUMO

Lipidomic data often exhibit missing data points, which can be categorized as missing completely at random (MCAR), missing at random, or missing not at random (MNAR). In order to utilize statistical methods that require complete datasets or to improve the identification of potential effects in statistical comparisons, imputation techniques can be employed. In this study, we investigate commonly used methods such as zero, half-minimum, mean, and median imputation, as well as more advanced techniques such as k-nearest neighbor and random forest imputation. We employ a combination of simulation-based approaches and application to real datasets to assess the performance and effectiveness of these methods. Shotgun lipidomics datasets exhibit high correlations and missing values, often due to low analyte abundance, characterized as MNAR. In this context, k-nearest neighbor approaches based on correlation and truncated normal distributions demonstrate best performance. Importantly, both methods can effectively impute missing values independent of the type of missingness, the determination of which is nearly impossible in practice. The imputation methods still control the type I error rate.

3.
FEBS Lett ; 598(7): 719-724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514456

RESUMO

The diverse range of organizations contributing to the global research ecosystem is believed to enhance the overall quality and resilience of its output. Mid-sized autonomous research institutes, distinct from universities, play a crucial role in this landscape. They often lead the way in new research fields and experimental methods, including those in social and organizational domains, which are vital for driving innovation. The EU-LIFE alliance was established with the goal of fostering excellence by developing and disseminating best practices among European biomedical research institutes. As directors of the 15 EU-LIFE institutes, we have spent a decade comparing and refining our processes. Now, we are eager to share the insights we've gained. To this end, we have crafted this Charter, outlining 10 principles we deem essential for research institutes to flourish and achieve ground-breaking discoveries. These principles, detailed in the Charter, encompass excellence, independence, training, internationality and inclusivity, mission focus, technological advancement, administrative innovation, cooperation, societal impact, and public engagement. Our aim is to inspire the establishment of new institutes that adhere to these principles and to raise awareness about their significance. We are convinced that they should be viewed a crucial component of any national and international innovation strategies.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Academias e Institutos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38503536

RESUMO

OBJECTIVES: Rheumatic diseases may impair reproductive success and pregnancy outcomes, but systematic evaluations across diseases are lacking. We conducted a nationwide cohort study to examine the impact of rheumatic diseases on reproductive health measures, comparing the impacts with those of other immune-mediated diseases (IMDs). METHODS: Out of all of the 5 339 804 Finnish citizens, individuals born 1964-1984 and diagnosed with any of the 19 IMDs before age 30 (women) or 35 (men) were matched with 20 controls by birth year, sex, and education. We used data from nationwide health registers to study the impact of IMDs on reproductive health measures, such as reproductive success and, for women, ever having experienced adverse maternal and perinatal outcomes. RESULTS: Several of the rheumatic diseases, particularly SLE, JIA, and seropositive RA, were associated with higher rates of childlessness and fewer children. The risks for pre-eclampsia, newborns being small for gestational age, preterm delivery, non-elective Caesarean sections, and need of neonatal intensive care were increased in many IMDs. Particularly, SLE, SS, type 1 diabetes, and Addison's disease showed >2-fold risks for some of these outcomes. In most rheumatic diseases, moderate (1.1-1.5-fold) risk increases were observed for diverse adverse pregnancy outcomes, with similar effects in IBD, celiac disease, asthma, ITP, and psoriasis. CONCLUSION: Rheumatic diseases have a broad impact on reproductive health, with effects comparable with that of several other IMDs. Of the rheumatic diseases, SLE and SS conferred the largest risk increases on perinatal adverse event outcomes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38450701

RESUMO

BACKGROUND: We used a polygenic score for hand grip strength (PGS HGS) to investigate whether genetic predisposition for higher muscle strength predicts age-related noncommunicable diseases, survival from acute adverse health events, and mortality. METHODS: This study consisted of 342 443 Finnish biobank participants from FinnGen Data Freeze 10 (53% women) aged 40-108 with combined genotype and health registry data. Associations between PGS HGS and a total of 27 clinical endpoints were explored with linear or Cox regression models. RESULTS: A higher PGS HGS was associated with a reduced risk of selected common noncommunicable diseases and mortality by 2%-10%. The risk for these medical conditions decreased by 5%-23% for participants in the highest PGS HGS quintile compared to those in the lowest PGS HGS quintile. A 1 standard deviation (SD) increase in the PGS HGS predicted a lower body mass index (ß = -0.112 kg/m2, standard error [SE] = 0.017, p = 1.69E-11) in women but not in men (ß = 0.004 kg/m2, p = .768). PGS HGS was not associated with better survival after acute adverse health events compared to the nondiseased period. CONCLUSIONS: The genotype that supports higher muscle strength appears to protect against future health adversities, albeit with modest effect sizes. Further research is needed to investigate whether or how a favorable lifestyle modifies this intrinsic capacity to resist diseases, and if the impacts of lifestyle behavior on health differs due to genetic predisposition for muscle strength.


Assuntos
Longevidade , Doenças não Transmissíveis , Masculino , Humanos , Feminino , Força da Mão/fisiologia , Estudos Prospectivos , Força Muscular/genética , Predisposição Genética para Doença
6.
J Clin Oncol ; 42(13): 1477-1487, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422475

RESUMO

PURPOSE: Family history (FH) and pathogenic variants (PVs) are used for guiding risk surveillance in selected high-risk women but little is known about their impact for breast cancer screening on population level. In addition, polygenic risk scores (PRSs) have been shown to efficiently stratify breast cancer risk through combining information about common genetic factors into one measure. METHODS: In longitudinal real-life data, we evaluate PRS, FH, and PVs for stratified screening. Using FinnGen (N = 117,252), linked to the Mass Screening Registry for breast cancer (1992-2019; nationwide organized biennial screening for age 50-69 years), we assessed the screening performance of a breast cancer PRS and compared its performance with FH of breast cancer and PVs in moderate- (CHEK2)- to high-risk (PALB2) susceptibility genes. RESULTS: Effect sizes for FH, PVs, and high PRS (>90th percentile) were comparable in screening-aged women, with similar implications for shifting age at screening onset. A high PRS identified women more likely to be diagnosed with breast cancer after a positive screening finding (positive predictive value [PPV], 39.5% [95% CI, 37.6 to 41.5]). Combinations of risk factors increased the PPVs up to 45% to 50%. A high PRS conferred an elevated risk of interval breast cancer (hazard ratio [HR], 2.78 [95% CI, 2.00 to 3.86] at age 50 years; HR, 2.48 [95% CI, 1.67 to 3.70] at age 60 years), and women with a low PRS (<10th percentile) had a low risk for both interval- and screen-detected breast cancers. CONCLUSION: Using real-life screening data, this study demonstrates the effectiveness of a breast cancer PRS for risk stratification, alone and combined with FH and PVs. Further research is required to evaluate their impact in a prospective risk-stratified screening program, including cost-effectiveness.


Assuntos
Neoplasias da Mama , Detecção Precoce de Câncer , Predisposição Genética para Doença , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Feminino , Pessoa de Meia-Idade , Detecção Precoce de Câncer/métodos , Idoso , Medição de Risco , Fatores de Risco
7.
Ann Am Thorac Soc ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330144

RESUMO

RATIONALE: While patients with obstructive sleep apnea (OSA) have a higher risk for COVID-19 hospitalization, the causal relationship has remained unexplored. OBJECTIVES: To understand the causal relationship between OSA and COVID-19 leveraging data from vaccination and electronic health records, genetic risk factors from genome-wide association studies (GWAS) and Mendelian randomization. METHODS: We elucidated genetic risk factors for OSA using FinnGen (N total = 377,277 individuals) performing genome-wide association. We used the associated variants as instruments for univariate and multivariate Mendelian randomization (MR) analyses and computed absolute risk reduction (ARR) against COVID-19 hospitalization with or without vaccination. MEASUREMENTS AND MAIN RESULTS: We identified 9 novel loci for OSA and replicated our findings in the Million Veterans Program. Furthermore, MR analysis showed that OSA was a causal risk factor for severe COVID-19 (P=9.41x10-4). Probabilistic modelling showed that the strongest genetic risk factor for OSA at the FTO locus reflected a signal of higher BMI, whereas BMI independent association was seen with the earlier reported SLC9A4 locus and a MECOM locus which is a transcriptional regulator with 210-fold enrichment in the Finnish population. Similarly, Multivariate MR (MVMR) analysis showed that the causality for severe COVID-19 was driven by body mass index (BMI), (P MVMR = 5.97x10-6, beta=0.47). Finally, vaccination reduced the risk for COVID-19 hospitalization more in the OSA patients than in the non-OSA controls: ARR = 13.3% vs. ARR = 6.3% in the OSA vs. non-OSA population. CONCLUSIONS: Our analysis identified novel genetic risk factors for OSA and showed that OSA is a causal risk factor for severe COVID-19. The effect is predominantly explained by higher BMI and suggests BMI-dependent effects at the level of individual variants and at the level of comorbid causality.

8.
Transl Psychiatry ; 14(1): 123, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413574

RESUMO

Nightmares are vivid, extended, and emotionally negative or negative dreams that awaken the dreamer. While sporadic nightmares and bad dreams are common and generally harmless, frequent nightmares often reflect underlying pathologies of emotional regulation. Indeed, insomnia, depression, anxiety, or alcohol use have been associated with nightmares in epidemiological and clinical studies. However, the connection between nightmares and their comorbidities are poorly understood. Our goal was to examine the genetic risk factors for nightmares and estimate correlation or causality between nightmares and comorbidities. We performed a genome-wide association study (GWAS) in 45,255 individuals using a questionnaire-based assessment on the frequency of nightmares during the past month and genome-wide genotyping data. While the GWAS did not reveal individual risk variants, heritability was estimated at 5%. In addition, the genetic correlation analysis showed a robust correlation (rg > 0.4) of nightmares with anxiety (rg = 0.671, p = 7.507e-06), depressive (rg = 0.562, p = 1.282e-07) and posttraumatic stress disorders (rg = 0.4083, p = 0.0152), and personality trait neuroticism (rg = 0.667, p = 4.516e-07). Furthermore, Mendelian randomization suggested causality from insomnia to nightmares (beta = 0.027, p = 0.0002). Our findings suggest that nightmares share genetic background with psychiatric traits and that insomnia may increase an individual's liability to experience frequent nightmares. Given the significant correlations with psychiatric and psychological traits, it is essential to grow awareness of how nightmares affect health and disease and systematically collect information about nightmares, especially from clinical samples and larger cohorts.


Assuntos
Sonhos , Distúrbios do Início e da Manutenção do Sono , Humanos , Sonhos/psicologia , Distúrbios do Início e da Manutenção do Sono/genética , Estudo de Associação Genômica Ampla , Transtornos de Ansiedade , Fatores de Risco
9.
Br J Cancer ; 130(4): 651-659, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172535

RESUMO

BACKGROUND: Hereditary factors, including single genetic variants and family history, can be used for targeting colorectal cancer (CRC) screening, but limited data exist on the impact of polygenic risk scores (PRS) on risk-based CRC screening. METHODS: Using longitudinal health and genomics data on 453,733 Finnish individuals including 8801 CRC cases, we estimated the impact of a genome-wide CRC PRS on CRC screening initiation age through population-calibrated incidence estimation over the life course in men and women. RESULTS: Compared to the cumulative incidence of CRC at age 60 in Finland (the current age for starting screening in Finland), a comparable cumulative incidence was reached 5 and 11 years earlier in persons with high PRS (80-99% and >99%, respectively), while those with a low PRS (< 20%) reached comparable incidence 7 years later. The PRS was associated with increased risk of post-colonoscopy CRC after negative colonoscopy (hazard ratio 1.76 per PRS SD, 95% CI 1.54-2.01). Moreover, the PRS predicted colorectal adenoma incidence and improved incident CRC risk prediction over non-genetic risk factors. CONCLUSIONS: Our findings demonstrate that a CRC PRS can be used for risk stratification of CRC, with further research needed to optimally integrate the PRS into risk-based screening.


Assuntos
Neoplasias Colorretais , Estratificação de Risco Genético , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Detecção Precoce de Câncer , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Risco , Colonoscopia , Fatores de Risco
10.
Lab Invest ; 104(4): 100325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220043

RESUMO

Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.


Assuntos
Formaldeído , Estratificação de Risco Genético , Humanos , Genótipo , Fixação de Tecidos/métodos , DNA/genética , Inclusão em Parafina/métodos
11.
BMC Med ; 21(1): 508, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129841

RESUMO

BACKGROUND: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.


Assuntos
Multiômica , Proteoma , Humanos , Adolescente , Adulto Jovem , Adulto , Criança , Índice de Massa Corporal , Proteoma/genética , Gêmeos Monozigóticos/genética , Estudos Longitudinais
12.
Nat Commun ; 14(1): 6934, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907536

RESUMO

The human plasma lipidome captures risk for cardiometabolic diseases. To discover new lipid-associated variants and understand the link between lipid species and cardiometabolic disorders, we perform univariate and multivariate genome-wide analyses of 179 lipid species in 7174 Finnish individuals. We fine-map the associated loci, prioritize genes, and examine their disease links in 377,277 FinnGen participants. We identify 495 genome-trait associations in 56 genetic loci including 8 novel loci, with a considerable boost provided by the multivariate analysis. For 26 loci, fine-mapping identifies variants with a high causal probability, including 14 coding variants indicating likely causal genes. A phenome-wide analysis across 953 disease endpoints reveals disease associations for 40 lipid loci. For 11 coronary artery disease risk variants, we detect strong associations with lipid species. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomics data and reveals genetic links between diseases and lipid species beyond the standard lipids.


Assuntos
Doença da Artéria Coronariana , Estudo de Associação Genômica Ampla , Humanos , Lipidômica , Doença da Artéria Coronariana/genética , Fenótipo , Lipídeos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
13.
Atherosclerosis ; 386: 117327, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37848354

RESUMO

BACKGROUND AND AIMS: Severe hypercholesterolemia (LDL-cholesterol ≥ 5 mmol/l) is a major risk factor for coronary artery disease (CAD). The etiology incudes both genetic and nongenetic factors, but persons carrying mutations in known hypercholesterolemia-associated genes are at significantly higher CAD risk than non-carriers. Yet, a significant proportion of mutation carriers remains undetected while the assessment of genetic candidate variants in clinical practice is challenging. METHODS: To address these challenges, we set out to test the utility of a practical approach to leverage data from a large reference cohort, the FinnGen Study encompassing 356,082 persons with extensive longitudinal health record information, to aid the clinical evaluation of single genetic candidate genes variants detected by exome sequence analysis in a target population of 351 persons with severe hypercholesterolemia. RESULTS: We identified 23 rare missense mutations in known hypercholesterolemia genes, 3 of which were previously described mutations (LDLR Pro309Lysfs, LDLR Arg595Gln and APOB Arg3527Gln). Subsequent in silico and clinical assessment of the remaining 20 variants pinpointed two likely hypercholesterolemia-associated variants in LDLR (Arg574Leu and Glu626Lys) and one in LDLRAP1 (Arg151Trp). Heterozygous carriers of the novel LDLR and LDLRAP1 variants received statin treatment more often than non-carriers (OR 2.1, p = 1.8e-6 and OR 1.4, p = 0.001) and untreated carriers had higher risk for ischemic heart disease (OR 2.0, p = 0.03 and OR 1.8, p = 0.008). CONCLUSIONS: Our data elucidate the wide spectrum of genetic variants impacting hypercholesterolemia and demonstrate the utility of a large reference population to assess the heterogeneous impact of candidate gene variants on cardiovascular disease risk.


Assuntos
Doença da Artéria Coronariana , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Hipercolesterolemia/epidemiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Finlândia/epidemiologia , Fenótipo , Receptores de LDL/genética , Mutação , Pró-Proteína Convertase 9/genética
14.
Atherosclerosis ; 384: 117274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743161

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide for both men and women, but their prevalence and burden show marked sex differences. The existing knowledge gaps in research, prevention, and treatment for women emphasize the need for understanding the biological mechanisms contributing to the sex differences in CVD. Sex differences in the plasma lipids that are well-known risk factors and predictors of CVD events have been recognized and are believed to contribute to the known disparities in CVD manifestations in men and women. However, the current understanding of sex differences in lipids has mainly come from the studies on routinely measured standard lipids- low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total triglycerides, and total cholesterol, which have been the mainstay of the lipid profiling. Sex differences in individual lipid species, collectively called the lipidome, have until recently been less explored due to the technological challenges and analytic costs. With the technological advancements in the last decade and growing interest in understanding mechanisms of sexual dimorphism in metabolic disorders, many investigators utilized metabolomics and lipidomics based platforms to examine the effect of biological sex on detailed lipidomic profiles and individual lipid species. This review presents an overview of the research on sex differences in the concentrations of circulating lipid species, focusing on findings from the metabolome- and lipidome-wide studies. We also discuss the potential contribution of genetic factors including sex chromosomes and sex-specific physiological factors such as menopause and sex hormones to the sex differences in lipidomic profiles.


Assuntos
Doenças Cardiovasculares , Lipidômica , Humanos , Feminino , Masculino , Triglicerídeos , Fatores de Risco , HDL-Colesterol , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética
15.
medRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425750

RESUMO

Background: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remain underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Methods: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N=651) and the Netherlands Twin Register (NTR) (N=665). Follow-up comprised four BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated using latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. The sources of genetic and environmental variation underlying the protein abundances were quantified using twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) using mixed-effect models and correlation networks. Results: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 6 and 4 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with many metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Conclusions: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.

16.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425837

RESUMO

Metabolites are small molecules that are useful for estimating disease risk and elucidating disease biology. Nevertheless, their causal effects on human diseases have not been evaluated comprehensively. We performed two-sample Mendelian randomization to systematically infer the causal effects of 1,099 plasma metabolites measured in 6,136 Finnish men from the METSIM study on risk of 2,099 binary disease endpoints measured in 309,154 Finnish individuals from FinnGen. We identified evidence for 282 causal effects of 70 metabolites on 183 disease endpoints (FDR<1%). We found 25 metabolites with potential causal effects across multiple disease domains, including ascorbic acid 2-sulfate affecting 26 disease endpoints in 12 disease domains. Our study suggests that N-acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial fibrillation through two distinct metabolic pathways and that N-methylpipecolate may mediate the causal effect of N6, N6-dimethyllysine on anxious personality disorder. This study highlights the broad causal impact of plasma metabolites and widespread metabolic connections across diseases.

18.
JAMA Cardiol ; 8(7): 674-683, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285119

RESUMO

Importance: A genetic contribution to preeclampsia susceptibility has been established but is still incompletely understood. Objective: To disentangle the underlying genetic architecture of preeclampsia and preeclampsia or other maternal hypertension during pregnancy with a genome-wide association study (GWAS) of hypertensive disorders of pregnancy. Design, Setting, and Participants: This GWAS included meta-analyses in maternal preeclampsia and a combination phenotype encompassing maternal preeclampsia and preeclampsia or other maternal hypertensive disorders. Two overlapping phenotype groups were selected for examination, namely, preeclampsia and preeclampsia or other maternal hypertension during pregnancy. Data from the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC, 1990-2011), Finnish FinnGen project (1964-2019), Estonian Biobank (1997-2019), and the previously published InterPregGen consortium GWAS were combined. Individuals with preeclampsia or other maternal hypertension during pregnancy and control individuals were selected from the cohorts based on relevant International Classification of Diseases codes. Data were analyzed from July 2020 to February 2023. Exposures: The association of a genome-wide set of genetic variants and clinical risk factors was analyzed for the 2 phenotypes. Results: A total of 16 743 women with prior preeclampsia and 15 200 with preeclampsia or other maternal hypertension during pregnancy were obtained from FINNPEC, FinnGen, Estonian Biobank, and the InterPregGen consortium study (respective mean [SD] ages at diagnosis: 30.3 [5.5], 28.7 [5.6], 29.7 [7.0], and 28 [not available] years). The analysis found 19 genome-wide significant associations, 13 of which were novel. Seven of the novel loci harbor genes previously associated with blood pressure traits (NPPA, NPR3, PLCE1, TNS2, FURIN, RGL3, and PREX1). In line with this, the 2 study phenotypes showed genetic correlation with blood pressure traits. In addition, novel risk loci were identified in the proximity of genes involved in the development of placenta (PGR, TRPC6, ACTN4, and PZP), remodeling of uterine spiral arteries (NPPA, NPPB, NPR3, and ACTN4), kidney function (PLCE1, TNS2, ACTN4, and TRPC6), and maintenance of proteostasis in pregnancy serum (PZP). Conclusions and Relevance: The findings indicate that genes related to blood pressure traits are associated with preeclampsia, but many of these genes have additional pleiotropic effects on cardiometabolic, endothelial, and placental function. Furthermore, several of the associated loci have no known connection with cardiovascular disease but instead harbor genes contributing to maintenance of successful pregnancy, with dysfunctions leading to preeclampsialike symptoms.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/diagnóstico , Estudo de Associação Genômica Ampla , Canal de Cátion TRPC6/genética , Placenta , Fatores de Risco
20.
Nat Hum Behav ; 7(7): 1069-1083, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37081098

RESUMO

Understanding factors associated with COVID-19 vaccination can highlight issues in public health systems. Using machine learning, we considered the effects of 2,890 health, socio-economic and demographic factors in the entire Finnish population aged 30-80 and genome-wide information from 273,765 individuals. The strongest predictors of vaccination status were labour income and medication purchase history. Mental health conditions and having unvaccinated first-degree relatives were associated with reduced vaccination. A prediction model combining all predictors achieved good discrimination (area under the receiver operating characteristic curve, 0.801; 95% confidence interval, 0.799-0.803). The 1% of individuals with the highest predicted risk of not vaccinating had an observed vaccination rate of 18.8%, compared with 90.3% in the study population. We identified eight genetic loci associated with vaccination uptake and derived a polygenic score, which was a weak predictor in an independent subset. Our results suggest that individuals at higher risk of suffering the worst consequences of COVID-19 are also less likely to vaccinate.


Assuntos
COVID-19 , Humanos , Finlândia , Vacinas contra COVID-19 , Renda , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...