Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(11): 5337-5344, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815314

RESUMO

Muscle atrophy is a well-known consequence of immobilization and critical illness, leading to prolonged rehabilitation and increased mortality. In this study, we develop a solution to preserve muscle mass using customized biocompatible neuromuscular electrical stimulation (NMES) device. Commercially available NMES solutions with gel-based electrodes often lead to skin irritation. We demonstrate the printing of conducting electrodes on a compressive stocking textile that can be used for more than seven days without observing any inflammation. This solution consists of a dry and biocompatible electrode directly integrated into the textile with good mechanical compatibility with skin (Young's modulus of 0.39 MPa). The surface roughness of the underlying substrate plays a significant role in obtaining good print quality. Electrochemical Impedance Spectroscopy (EIS) analysis showed that the printed electrode showed better performance than the commercial ones based on a matched interfacial performance and improved series resistance. Furthermore, we investigated our NMES solution in a hospital setting to evaluate its effectiveness on muscle atrophy, with promising results.


Assuntos
Pele , Têxteis , Humanos , Atrofia Muscular/terapia , Estimulação Elétrica , Eletrodos
2.
J Phys Chem Lett ; 13(13): 3130-3137, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357181

RESUMO

Overcoming Voc loss to increase the efficiency of perovskite solar cells (PSCs) has been aggressively studied. In this work, we introduce and compare rubidium iodide (RbI) and potassium iodide (KI) alkali metal halides (AMHs) as dopants in a tin-lead (SnPb)-based perovskite system to improve the performance of PSCs by enhancing their Voc. Improvement in terms of surface morphology, crystallinity, charge transfer, and carrier transport in the SnPb perovskites was observed with the addition of AMH dopants. Significant power conversion efficiency improvement has been achieved with the incorporation of either dopant, and the highest efficiency was 21.04% in SnPb mixed halide PSCs when the RbI dopant was employed. In conclusion, we can outline the enhancement strategy that yields a remarkable efficiency of >20% with a smaller Voc loss and improved storage, light, and thermal stability in SnPb PSCs via doping engineering.

3.
Nano Lett ; 18(6): 3600-3607, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701473

RESUMO

Frequently observed high Voc loss in tin-lead mixed perovskite solar cells is considered to be one of the serious bottle-necks in spite of the high attainable Jsc due to wide wavelength photon harvesting. An amicable solution to minimize the Voc loss up to 0.50 V has been demonstrated by introducing an n-type interface with spike structure between the absorber and electron transport layer inspired by highly efficient Cu(In,Ga)Se2 solar cells. Introduction of a conduction band offset of ∼0.15 eV with a thin phenyl-C61-butyric acid methyl ester layer (∼25 nm) on the top of perovskite absorber resulted into improved Voc of 0.75 V leading to best power conversion efficiency of 17.6%. This enhancement is attributed to the facile charge flow at the interface owing to the reduction of interfacial traps and carrier recombination with spike structure as evidenced by time-resolved photoluminescence, nanosecond transient absorption, and electrochemical impedance spectroscopy measurements.

4.
Sci Rep ; 8(1): 2482, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410450

RESUMO

Perovskite solar cells based on series of inorganic cesium lead bromide and iodide mixture, CsPbBr3-xI x , where x varies between 0, 0.1, 0.2, and 0.3 molar ratio were synthesized by two step-sequential deposition at ambient condition to design the variations of wide band gap light absorbers. A device with high overall photoconversion efficiency of 3.98 % was obtained when small amount of iodide (CsPbBr2.9I0.1) was used as the perovskite and spiro-OMeTAD as the hole transport material (HTM). We investigated the origin of variation in open circuit voltage, Voc which was shown to be mainly dependent on two factors, which are the band gap of the perovskite and the work function of the HTM. An increment in Voc was observed for the device with larger perovskite band gap, while keeping the electron and hole extraction contacts the same. Besides, the usage of bilayer P3HT/MoO3 with deeper HOMO level as HTM instead of spiro-OMeTAD, thus increased the Voc from 1.16 V to 1.3 V for CsPbBr3 solar cell, although the photocurrent is lowered due to charge extraction issues. The stability studies confirmed that the addition of small amount of iodide into the CsPbBr3 is necessarily to stabilize the cell performance over time.

5.
J Phys Chem Lett ; 9(2): 294-297, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29286666

RESUMO

Photoexcited electron injection dynamics from CsPbI3 quantum dots (QDs) to wide gap metal oxides are studied by transient absorption spectroscopy. Experimental results show under a low excitation intensity that ∼99% of the photoexcited electrons in CsPbI3 QDs can be injected into TiO2 with a size-dependent rate ranging from 1.30 × 1010 to 2.10 × 1010 s-1, which is also ∼2.5 times faster than that in the case of ZnO. A demonstration QD-sensitized solar cell based on a CsPbI3/TiO2 electrode is fabricated that delivers a power conversion efficiency of 5%.

6.
J Am Chem Soc ; 139(46): 16708-16719, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29091445

RESUMO

Organic-inorganic hybrid perovskite solar cells have demonstrated unprecedented high power conversion efficiencies in the past few years. Now, the universal instability of the perovskites has become the main barrier for this kind of solar cells to realize commercialization. This situation can be even worse for those tin-based perovskites, especially for CsSnI3, because upon exposure to ambient atmosphere the desired black orthorhombic phase CsSnI3 would promptly lose single crystallinity and degrade to the inactive yellow phase, followed by irreversible oxidation into metallic Cs2SnI6. By alloying CsSnI3 with CsPbI3, we herein report the synthesis of alloyed perovskite quantum dot (QD), CsSn1-xPbxI3, which not only can be phase-stable for months in purified colloidal solution but also remains intact even directly exposed to ambient air, far superior to both of its parent CsSnI3 and CsPbI3 QDs. Ultrafast transient absorption spectroscopy studies reveal that the photoexcited electrons in the alloyed QDs can be injected into TiO2 nanocrystals at a fast rate of 1.12 × 1011 s-1, which enables a high photocurrent generation in solar cells.

7.
ACS Omega ; 2(8): 4464-4469, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457738

RESUMO

Vacuum deposition is a simple and controllable approach that aims to form higher-quality perovskite films compared with those formed using solution-based deposition processes. Herein, we demonstrate a novel method to promote the intercalation control of inorganic cesium lead iodide (CsPbI3) perovskite thin films via alternate vacuum deposition. We also investigated the effect of layer-by-layer deposition of PbI2/CsI to fabricate efficient planar heterojunction CsPbI3 thin films and solar cells. This procedure is comparatively simple when compared with commonly used coevaporation techniques; further, precise intercalation control of the CsPbI3 thin films can be achieved by increasing the number of layers in the layer-by-layer deposition of PbI2/CsI. The best control and the highest reproducibility were achieved for the deposition of four double layers owing to the precise intercalation control during the deposition of the CsPbI3 thin film. A power conversion efficiency of 6.79% was obtained via alternating vacuum deposition of two double layers with a short-circuit current density (J sc) of 12.06 mA/cm2, an open-circuit voltage (V oc) of 0.79 V, and a fill factor (FF) of 0.72. Our results suggest a route for inorganic precursors to be used for efficient perovskite solar cells via alternating vacuum deposition.

8.
ChemSusChem ; 9(18): 2634-2639, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27584915

RESUMO

The interface between the perovskite (PVK, CH3 NH3 PbI3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO2 /mesoporous TiO2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 µsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química , Compostos de Amônio/química , Tensoativos/química
9.
Phys Chem Chem Phys ; 18(22): 14970-5, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194000

RESUMO

In this work, a new current peak at forward bias in the dark current-voltage curves has been identified for standard mesoscopic perovskite solar cells. This characteristic peak appears only under some specific conditions, mainly in the reverse scan (RS) direction and when the solar cells were kept for several seconds under short-circuit conditions before starting the RS measurement. This peak disappears when the above experimental conditions are not applied. It is considered that this uncommon diode shape is obtained because shallow and/or deep trap states located at the interface between either perovskite/p-type or perovskite/n-type transport materials are dynamically filled during the RS voltage scan. To corroborate this hypothesis, the response of hole transport materials (HTMs), small molecule spiro-OMeTAD and polymer P3HT, as well as both HTMs with additives, was compared. Also perovskite absorbers such as CH3NH3PbI3 and all-inorganic perovskite based on cesium (CsPbI3) were also analyzed, achieving in all cases similar trends.

10.
J Phys Chem Lett ; 5(10): 1628-35, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26270357

RESUMO

We report on the preparation of a series of solution-processed perovskite solar cells based on methylammonium (MA) lead halide derivatives, MAPbX3, which show tunable optical properties depending on the nature and ratio of the halides employed (X = Cl, Br, and I). Devices have been prepared with different cell architecture, thin film, and mesoporous scaffold (TiO2 and Al2O3). We have analyzed different sample sets focusing on the characterization of the charge recombination by means of impedance spectroscopy (IS). On the one hand, our study discloses that the insertion of both Cl and Br in the perovskite lattice reduces the charge recombination rates in the light absorber film, thus determining the open circuit voltage (Voc) of the device. The samples prepared on a mesoporous Al2O3 electrode present lower charge recombination rates than those devices prepared on mesoporous TiO2. Furthermore, the addition of Br in the perovskite structure was demonstrated to improve slightly the lifetime of the devices; in fact, the efficiencies of all devices tested remained at least at the 80% of the initial value 1 month after their preparation. These results highlight the crucial role of the charge-recombination processes on the performance of the perovskite solar cells and pave the way for further progress on this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...