Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(7): e54857, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506479

RESUMO

Malaria-causing parasites rely on an actin-myosin-based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N-terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent-infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.


Assuntos
Culicidae , Malária Falciparum , Miosina não Muscular Tipo IIA , Animais , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Serina/metabolismo , Esporozoítos/metabolismo
2.
EMBO Rep ; 23(7): e54719, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35403820

RESUMO

During transmission of malaria-causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane-associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin-GFP localizes at the cytoplasmic periphery and concavin(-) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(-) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(-) sporozoites are transmitted. Strikingly, motile concavin(-) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.


Assuntos
Anopheles , Malária , Parasitos , Plasmodium , Animais , Anopheles/parasitologia , Mamíferos , Esporozoítos/metabolismo
3.
EMBO Mol Med ; 13(4): e13933, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33666362

RESUMO

Transmission of malaria-causing parasites to and by the mosquito relies on active parasite migration and constitutes bottlenecks in the Plasmodium life cycle. Parasite adaption to the biochemically and physically different environments must hence be a key evolutionary driver for transmission efficiency. To probe how subtle but physiologically relevant changes in environmental elasticity impact parasite migration, we introduce 2D and 3D polyacrylamide gels to study ookinetes, the parasite forms emigrating from the mosquito blood meal and sporozoites, the forms transmitted to the vertebrate host. We show that ookinetes adapt their migratory path but not their speed to environmental elasticity and are motile for over 24 h on soft substrates. In contrast, sporozoites evolved more short-lived rapid gliding motility for rapidly crossing the skin. Strikingly, sporozoites are highly sensitive to substrate elasticity possibly to avoid adhesion to soft endothelial cells on their long way to the liver. Hence, the two migratory stages of Plasmodium evolved different strategies to overcome the physical challenges posed by the respective environments and barriers they encounter.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Elasticidade , Células Endoteliais , Esporozoítos
4.
Parasitol Res ; 117(8): 2487-2497, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797085

RESUMO

Malaria is transmitted through the injection of Plasmodium sporozoites into the skin by Anopheles mosquitoes. The parasites first replicate within the liver before infecting red blood cells, which leads to the symptoms of the disease. Experimental immunization with attenuated sporozoites that arrest their development in the liver has been extensively investigated in rodent models and humans. Recent technological advances have included the capacity to cryopreserve sporozoites for injection, which has enabled a series of controlled studies on human infection with sporozoites. Here, we used a cryopreservation protocol to test the efficiency of genetically attenuated cryopreserved sporozoites for immunization of mice in comparison with freshly isolated controls. This showed that cryopreserved sporozoites are highly viable as judged by their capacity to migrate in vitro but show only 20% efficiency in liver infection, which impacts their capacity to generate protection of animals in immunization experiments.


Assuntos
Malária/prevenção & controle , Plasmodium berghei/imunologia , Esporozoítos/imunologia , Vacinação , Vacinas Atenuadas/imunologia , Animais , Anopheles/parasitologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Criopreservação , Células Hep G2 , Humanos , Fígado/parasitologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Esporozoítos/genética , Esporozoítos/metabolismo
5.
Cell Microbiol ; 20(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316156

RESUMO

Motile cells and pathogens migrate in complex environments and yet are mostly studied on simple 2D substrates. In order to mimic the diverse environments of motile cells, a set of assays including substrates of defined elasticity, microfluidics, micropatterns, organotypic cultures, and 3D gels have been developed. We briefly introduce these and then focus on the use of micropatterned pillar arrays, which help to bridge the gap between 2D and 3D. These structures are made from polydimethylsiloxane, a moldable plastic, and their use has revealed new insights into mechanoperception in Caenorhabditis elegans, gliding motility of Plasmodium, swimming of trypanosomes, and nuclear stability in cancer cells. These studies contributed to our understanding of how the environment influences the respective cell and inform on how the cells adapt to their natural surroundings on a cellular and molecular level.


Assuntos
Movimento Celular/fisiologia , Animais , Bioensaio/métodos , Caenorhabditis elegans/patogenicidade , Dimetilpolisiloxanos , Humanos , Plasmodium/patogenicidade
6.
Adv Healthc Mater ; 6(6)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28117558

RESUMO

Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream.


Assuntos
Culicidae/parasitologia , Microvasos/parasitologia , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo , Animais , Humanos , Microvasos/fisiopatologia , Plasmodium berghei/citologia , Esporozoítos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...