Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent ; 135: 104556, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209769

RESUMO

OBJECTIVE: Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs. METHODS: We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers. RESULTS: For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability. CONCLUSION: If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high. CLINICAL SIGNIFICANCE: This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Radiografia Panorâmica , Pesquisadores
2.
IEEE Trans Neural Netw Learn Syst ; 34(9): 5531-5543, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34851838

RESUMO

Federated distillation (FD) is a popular novel algorithmic paradigm for Federated learning (FL), which achieves training performance competitive to prior parameter averaging-based methods, while additionally allowing the clients to train different model architectures, by distilling the client predictions on an unlabeled auxiliary set of data into a student model. In this work, we propose FedAUX, an extension to FD, which, under the same set of assumptions, drastically improves the performance by deriving maximum utility from the unlabeled auxiliary data. FedAUX modifies the FD training procedure in two ways: First, unsupervised pre-training on the auxiliary data is performed to find a suitable model initialization for the distributed training. Second, (ε, δ) -differentially private certainty scoring is used to weight the ensemble predictions on the auxiliary data according to the certainty of each client model. Experiments on large-scale convolutional neural networks (CNNs) and transformer models demonstrate that our proposed method achieves remarkable performance improvements over state-of-the-art FL methods, without adding appreciable computation, communication, or privacy cost. For instance, when training ResNet8 on non-independent identically distributed (i.i.d.) subsets of CIFAR10, FedAUX raises the maximum achieved validation accuracy from 30.4% to 78.1%, further closing the gap to centralized training performance. Code is available at https://github.com/fedl-repo/fedaux.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...