Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(19)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38286011

RESUMO

In this study, we explore the effect of a single flat band in the electronic properties of a ferromagnetic two-dimensional Lieb lattice using the multiband Hubbard model with polarized carriers, spin-up and spin-down. We employ the self-consistent dynamical mean field theory and a Green functions cumulant expansion around the atomic limit to obtain the correlated densities of states while varying the intra- and interband interactions. Our findings demonstrate a renormalization of the correlated density of states in both the spin-up and spin-down carriers as we varied the intra- and interband interactions. We conclude that the presence of a flat band enables the system to maintain a metal state with itinerant ferromagnetism in the spin-up carrier.

2.
J Phys Condens Matter ; 35(24)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36944247

RESUMO

We use the cumulant Green's functions method (CGFM) to study the single-band Hubbard model. The starting point of the method is to diagonalize a cluster ('seed') containingNcorrelated sites and employ the cumulants calculated from the cluster solution to obtain the full Green's functions for the lattice. All calculations are done directly; no variational or self-consistent process is needed. We benchmark the one-dimensional results for the gap, the double occupancy, and the ground-state energy as functions of the electronic correlation at half-filling and the occupation numbers as functions of the chemical potential obtained from the CGFM against the corresponding results of the thermodynamic Bethe ansatz and the quantum transfer matrix methods. The particle-hole symmetry of the density of states is fulfilled, and the gap, occupation numbers, and ground-state energy tend systematically to the known results as the cluster size increases. We include a straightforward application of the CGFM to simulate the singles occupation of an optical lattice experiment with lithium-6 atoms in an eight-site Fermi-Hubbard chain near half-filling. The method can be applied to any parameter space for one, two, or three-dimensional Hubbard Hamiltonians and extended to other strongly correlated models, like the Anderson Hamiltonian, thet - J, Kondo, and Coqblin-Schrieffer models.

3.
J Phys Condens Matter ; 33(29)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561836

RESUMO

We investigate the evolution of multicritical points under pressure and magnetic field in a model described by two 5fbands (calledαandß) that hybridize with a single itinerant conduction band. The interaction is given by the direct Coulomb and the Hund's rule exchange terms. Three types of orderings are considered: two conventional spin density waves (SDWs) and an exotic SDW, i.e., with no magnetic moment formation. The conventional SDWs phases, are characterized bymfß>mfαandmfα>mfß, respectively, wheremfαandmfßare the intraband staggered magnetizations. The exotic SDW, which has time reversal symmetry, is described by a purely imaginary order parameter. This phase is related to a band mixing given by the spin-flip part of the Hund's rule exchange interaction. As result, without magnetic field, the phase diagrams of temperature (T) versus pressure (given by the variation of the bandwidth (W)) shows a sequence of phase transitions involving the three phases which gives rise to multicritical points. The presence of the magnetic field (hz) has drastic effects on part of the phase diagram and the location of the multicritical points.

4.
J Phys Condens Matter ; 32(44): 445601, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32634784

RESUMO

A simple variational argument is presented which indicates that the spin-orbit coupling in itinerant systems can be enhanced by strong electronic correlations. The importance of the enhancement in the formation of the giant magnetic anisotropy found in the metallic paramagnetic and magnetically ordered states of compounds containing transition metal and light actinide elements (such as tetragonal Sr2RhO4, Sr2IrO4, the cubic uranium monochalcogenides and tetragonal URu2Si2) is discussed.

5.
J Phys Condens Matter ; 32(14): 143002, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801118

RESUMO

This topical review describes the multitude of unconventional behaviors in the hidden order, heavy fermion, antiferromagnetic and superconducting phases of the intermetallic compound URu2Si2 when tuned with pressure, magnetic field, and substitutions for all three elements. Such 'perturbations' result in a variety of new phases beyond the mysterious hidden order that are only now being slowly understood through a series of state-of-the-science experimentation, along with an array of novel theoretical approaches. Despite all these efforts spanning more than 30 years, hidden order (HO) remains puzzling and non-clarified, and the search continues in 2019 into a fourth decade for its final resolution. Here we attempt to update the present situation of URu2Si2 importing the latest experimental results and theoretical proposals. First, let us consider the pristine compound as a function of temperature and report the recent measurements and models relating to its heavy Fermi liquid crossover, its HO and superconductivity (SC). Recent experiments and theories are surmized that address four-fold symmetry breaking (or nematicity), Isingness and unconventional excitation modes. Second, we review the pressure dependence of URu2Si2 and its transformation to antiferromagnetic long-range order. Next we confront the dramatic high magnetic-field phases requiring fields above 40 T. And finally, we attempt to answer how does random substitutions of other 5f elements for U, and 3d, 4d, and 5d elements for Ru, and even P for Si affect and transform the HO. Commensurately, recent theoretical models are summarized and then related to the intriguing experimental behavior.

6.
Rep Prog Phys ; 79(8): 084501, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376888

RESUMO

We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.

7.
J Phys Condens Matter ; 26(22): 225602, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24824417

RESUMO

We report inelastic neutron scattering experiments on a single crystal of the intermediate valence compound CePd3. At 300 K the magnetic scattering is quasielastic, with half-width Γ = 23 meV, and is independent of momentum transfer Q. At low temperature, the Q-averaged magnetic spectrum is inelastic, exhibiting a broad peak centered near Emax = 55 meV. These results, together with the temperature dependence of the susceptibility, 4f occupation number, and specific heat, can be fit by the Kondo/Anderson impurity model. The low temperature scattering near Emax, however, shows significant variations with Q, reflecting the coherence of the 4f lattice. The intensity is maximal at (1/2, 1/2, 0), intermediate at (1/2, 0, 0) and (0, 0, 0), and weak at (1/2, 1/2, 1/2). We discuss this Q-dependence in terms of current ideas about coherence in heavy fermion systems.


Assuntos
Cério/química , Modelos Químicos , Paládio/química , Simulação por Computador , Campos Magnéticos , Marcadores de Spin , Temperatura
8.
Phys Rev Lett ; 111(5): 057402, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952443

RESUMO

Ultrafast optical spectroscopy is used to study the antiferromagnetic f-electron system USb(2). We observe the opening of two charge gaps at low temperatures (

Assuntos
Antimônio/química , Magnetismo , Urânio/química , Temperatura Baixa , Óptica e Fotônica/métodos , Análise Espectral/métodos
9.
Phys Rev Lett ; 100(16): 165703, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18518220

RESUMO

Ultraviolet-photoemission (UPS) measurements and supporting specific-heat, thermal-expansion, resistivity, and magnetic-moment measurements are reported for the magnetic shape-memory alloy Ni2MnGa over the temperature range 100T(PM) is due to the Ni d minority-spin electrons. Below T(M) this peak disappears, resulting in an enhanced density of states at energies around 0.8 eV. This enhancement reflects Ni d and Mn d electronic contributions to the majority-spin density of states.

10.
Phys Rev Lett ; 97(23): 235701, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280213

RESUMO

The gamma-->alpha isostructural transition in the Ce0.9-xLaxTh0.1 system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity or striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to 0 K with increasing La doping, and the transition changes from being first-order to continuous at a critical concentration, x(c) approximately 0.14. At the tricritical point, the coefficient of the linear T term in the specific heat gamma and the magnetic susceptibility increase rapidly near x(c) and approach large values at x=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. The Wilson ratio reaches a value above 2 for a narrow range of concentrations near x(c), where the specific heat and susceptibility vary most rapidly with the doping concentration.

11.
Phys Rev Lett ; 88(11): 117201, 2002 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-11909426

RESUMO

Experimental results for the susceptibility, magnetization, specific heat, 4f occupation number, Hall effect, and magnetoresistance for single crystals of the intermediate valence (IV) compound YbAl3 show that, in addition to the Kondo temperature scale T(K) approximately 670 K, there is a low temperature scale T(coh) approximately 30-40 K for the onset of Fermi liquid coherence. Furthermore, the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. We suggest that these effects are generic for IV compounds and we discuss them in terms of the theory of the Anderson lattice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...