Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400238, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864562

RESUMO

Sarcoidosis, a granulomatous disorder of unknown etiology affecting multiple organs. It is often a benign disease but can have significant morbidity and mortality when the heart is involved (often presenting with clinical manifestations such as conduction irregularities and heart failure). This study addresses a critical gap in cardiac sarcoidosis (CS) research by developing a robust animal model. The absence of a reliable animal model for cardiac sarcoidosis is a significant obstacle in advancing understanding and treatment of this condition. The proposed model utilizes carbon nanotube injection and transverse aortic constriction as stressors. Intramyocardial injection of carbon nanotubes induces histiocytes typical of sarcoid granulomas in the heart but shows limited effects on fibrosis or cardiac function. Priming the immune system with transverse aortic constriction prior to intramyocardial injection of carbon nanotubes enhances cardiac fibrosis, diminishes cardiac function, and impairs cardiac conduction. This novel, easily executable model may serve as a valuable tool for disease profiling, biomarker identification, and therapeutic exploration.

2.
JCI Insight ; 8(15)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37384420

RESUMO

Almost half of patients recovering from open-chest surgery experience atrial fibrillation (AF) that results principally from inflammation in the pericardial space surrounding the heart. Given that postoperative AF is associated with increased mortality, effective measures to prevent AF after open-chest surgery are highly desirable. In this study, we tested the concept that extracellular vesicles (EVs) isolated from human atrial explant-derived cells can prevent postoperative AF. Middle-aged female and male rats were randomized to undergo sham operation or induction of sterile pericarditis followed by trans-epicardial injection of human EVs or vehicle into the atrial tissue. Pericarditis increased the probability of inducing AF while EV treatment abrogated this effect in a sex-independent manner. EV treatment reduced infiltration of inflammatory cells and production of pro-inflammatory cytokines. Atrial fibrosis and hypertrophy seen after pericarditis were markedly attenuated by EV pretreatment, an effect attributable to suppression of fibroblast proliferation by EVs. Our study demonstrates that injection of EVs at the time of open-chest surgery shows prominent antiinflammatory effects and prevents AF due to sterile pericarditis. Translation of this finding to patients might provide an effective new strategy to prevent postoperative AF by reducing atrial inflammation and fibrosis.


Assuntos
Fibrilação Atrial , Vesículas Extracelulares , Pericardite , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Ratos , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Inflamação/complicações , Átrios do Coração , Fibrose
3.
Mol Ther Nucleic Acids ; 32: 80-93, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36969553

RESUMO

The cell origin-specific payloads within extracellular vesicles (EVs) mediate therapeutic bioactivity for a wide variety of stem cell types. In this study, we profiled the microRNA (miRNA) and protein cargos found within EVs produced by three clinical-grade stem cell products of different ontogenies being considered for clinical application, namely bone marrow-derived mesenchymal stromal cells (BM-MSCs), heart-derived cells (HDCs), and umbilical cord-derived MSCs (UC-MSCs). Although several miRNAs (757) and proteins (420) were found in common, each producer cell type expressed unique miRNA profiles when the most highly expressed transcripts were compared. Differential expression analysis revealed that BM-MSCs and HDCs were quite similar, while UC-MSCs had the greatest number of unique miRNAs and proteins. Despite these differences, all three EVs promoted cell adhesion/migration, immune response, platelet aggregation, protein translation/stabilization, and RNA processing. EVs from BM-MSCs were implicated in apoptosis, cell-cycle progression, collagen formation, heme pigment synthesis, and smooth muscle differentiation, while HDC and UC-MSC EVs were found to regulate complement activation, endopeptidase activity, and matrix metallopeptidases. Overall, miRNA and protein profiling reveal functional differences between three leading stem cell products. These findings provide a framework for mechanistic exploration of candidate therapeutic molecules driving the salutary effects of EVs.

4.
Microbiol Res ; 259: 126998, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35276454

RESUMO

Polyextremophilic, hydrocarbonoclastic Pseudomonas aeruginosa san ai can survive under extreme environmental challenges in the presence of a variety of pollutants such as organic solvents and hydrocarbons, particularly aromatics, heavy metals, and high pH. To date, the metabolic plasticity of the extremophilic P. aeruginosa, has not been sufficiently studied in regard to the effect of changing carbon sources. Therefore, the present study explores the carbon metabolic pathways of polyextremophilic P. aeruginosa san ai grown on sodium benzoate versus glucose and its potential for aromatic degradation. P. aeruginosa san ai removed/metabolised nearly 430 mg/L of benzoate for 48 h, demonstrating a high capacity for aromatic degradation. Comparative functional proteomics, targeted metabolomics and genomics analytical approaches were employed to study the carbon metabolism of the P. aeruginosa san ai. Functional proteomic study of selected enzymes participating in the ß-ketoadipate and the Entner-Doudoroff pathways revealed a metabolic reconfiguration induced by benzoate compared to glucose. Metabolome analysis implied the existence of both catechol and protocatechuate branches of the ß-ketoadipate pathway. Enzymatic study of benzoate grown cultures confirmed the activity of the ortho- catechol branch of the ß-ketoadipate pathway. Even high concentrations of benzoate did not show increased stress protein synthesis, testifying to its extremophilic nature capable of surviving in harsh conditions. This ability of Pseudomonas aeruginosa san ai to efficiently degrade benzoate can provide a wide range of use of this strain in environmental and agricultural application.


Assuntos
Benzoatos , Extremófilos , Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Biodegradação Ambiental , Carbono , Glucose/metabolismo , Proteômica , Pseudomonas aeruginosa/metabolismo
5.
Stem Cell Res Ther ; 13(1): 20, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033181

RESUMO

BACKGROUND: Although 90% of infections with the novel coronavirus 2 (COVID-19) are mild, many patients progress to acute respiratory distress syndrome (ARDS) which carries a high risk of mortality. Given that this dysregulated immune response plays a key role in the pathology of COVID-19, several clinical trials are underway to evaluate the effect of immunomodulatory cell therapy on disease progression. However, little is known about the effect of ARDS associated pro-inflammatory mediators on transplanted stem cell function and survival, and any deleterious effects could undermine therapeutic efficacy. As such, we assessed the impact of inflammatory cytokines on the viability, and paracrine profile (extracellular vesicles) of bone marrow-derived mesenchymal stromal cells, heart-derived cells, and umbilical cord-derived mesenchymal stromal cells. METHODS: All cell products were manufactured and characterized to established clinical release standards by an accredited clinical cell manufacturing facility. Cytokines and Extracellular vesicles in the cell conditioned media were profiled using proteomic array and nanoparticle tracking analysis. Using a survey of the clinical literature, 6 cytotoxic cytokines implicated in the progression of COVID-19 ARDS. Flow cytometry was employed to determine receptor expression of these 6 cytokines in three cell products. Based on clinical survey and flow cytometry data, a cytokine cocktail that mimics cytokine storm seen in COVID-19 ARDS patients was designed and the impact on cytokine cocktail on viability and paracrine secretory ability of cell products were assessed using cell viability and nanoparticle tracking analysis. RESULTS: Flow cytometry revealed the presence of receptors for all cytokines but IL-6, which was subsequently excluded from further experimentation. Despite this widespread expression, exposure of each cell type to individual cytokines at doses tenfold greater than observed clinically or in combination at doses associated with severe ARDS did not alter cell viability or extracellular vesicle character/production in any of the 3 cell products. CONCLUSIONS: The paracrine production and viability of the three leading cell products under clinical evaluation for the treatment of severe COVID-19 ARDS are not altered by inflammatory mediators implicated in disease progression.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Transplante de Células-Tronco Mesenquimais , Lesão Pulmonar Aguda/terapia , Citocinas , Humanos , Proteômica , SARS-CoV-2
6.
Biomedicines ; 9(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499132

RESUMO

Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.

7.
Sci Rep ; 10(1): 13572, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782317

RESUMO

Cancer cells release small extracellular vesicles, exosomes, that have been shown to contribute to various aspects of cancer development and progression. Differential analysis of exosomal proteomes from cancerous and non-tumorigenic breast cell lines can provide valuable information related to breast cancer progression and metastasis. Moreover, such a comparison can be explored to find potentially new protein biomarkers for early disease detection. In this study, exosomal proteomes of MDA-MB-231, a metastatic breast cancer cell line, and MCF-10A, a non-cancerous epithelial breast cell line, were identified by nano-liquid chromatography coupled to tandem mass spectrometry. We also tested three exosomes isolation methods (ExoQuick, Ultracentrifugation (UC), and Ultrafiltration-Ultracentrifugation) and detergents (n-dodecyl ß-D-maltoside, Triton X-100, and Digitonin) for solubilization of exosomal proteins and enhanced detection by mass spectrometry. A total of 1,107 exosomal proteins were identified in both cell lines, 726 of which were unique to the MDA-MB-231 breast cancer cell line. Among them, 87 proteins were predicted to be relevant to breast cancer and 16 proteins to cancer metastasis. Three exosomal membrane/surface proteins, glucose transporter 1 (GLUT-1), glypican 1 (GPC-1), and disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), were identified as potential breast cancer biomarkers and validated with Western blotting and high-resolution flow cytometry. We demonstrated that exosomes are a rich source of breast cancer-related proteins and surface biomarkers that may be used for disease diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Exossomos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores Tumorais/análise , Feminino , Humanos , Espectrometria de Massas , Células Tumorais Cultivadas , Ultracentrifugação
8.
Aging Cell ; 19(7): e13174, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558221

RESUMO

While cell therapy is emerging as a promising option for patients with ischemic cardiomyopathy (ICM), the influence of advanced donor age and a history of ischemic injury on the reparative performance of these cells are not well defined. As such, intrinsic changes that result from advanced donor age and ischemia are explored in hopes of identifying a molecular candidate capable of restoring the lost reparative potency of heart explant-derived cells (EDCs) used in cell therapy. EDCs were cultured from myocardial biopsies obtained from young or old mice 4 weeks after randomization to experimental myocardial infarction or no intervention. Advanced donor age reduces cell yield while increasing cell senescence and the secretion of senescence-associated cytokines. A history of ischemic injury magnifies these effects as cells are more senescent and have lower antioxidant reserves. Consistent with these effects, intramyocardial injection of EDCs from aged ischemic donors provided less cell-mediated cardiac repair. A transcriptome comparison of ICM EDCs shows aging modifies many of the pathways responsible for effective cell cycle control and DNA damage/repair. Over-expression of the barely explored antisenescent transcription factor, Mybl2, in EDCs from aged ICM donors reduces cell senescence while conferring salutary effects on antioxidant activity and paracrine production. In vivo, we observed an increase in cell retention and vasculogenesis after treatment with Mybl2-over-expressing EDCs which improved heart function in infarcted recipient hearts. In conclusion, Mybl2 over-expression rejuvenates senescent EDCs sourced from aged ICM donors to confer cell-mediated effects comparable to cells from young nonischemic donors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Infarto do Miocárdio/genética , Transativadores/metabolismo , Envelhecimento , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Camundongos , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...