Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 185, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024510

RESUMO

The precipitation oxygen isotopic composition is a useful environmental tracer for climatic and hydrological studies. However, accurate and high-resolution precipitation oxygen isoscapes are currently lacking in China. In this study, a precipitation oxygen isoscape in China for a period of 148 years is built by integrating observed and iGCMs-simulated isotope compositions using an optimal hybrid approach of three data fusion and two bias correction methods. The temporal and spatial resolutions of the isoscape are monthly and 50-60 km, respectively. Results show that the Convolutional Neural Networks (CNN) fusion method performs the best (correlation coefficient larger than 0.95 and root mean square error smaller than 1‰), and the other two data fusion methods perform slightly better than the bias correction methods. Thus, the isoscape is generated by using the CNN fusion method for the common 1969-2007 period and by using the bias correction methods for remaining years. The generated isoscape, which shows similar spatio-temporal distributions to observations, is reliable and useful for providing strong support for tracking atmospheric and hydrological processes.


Assuntos
Hidrologia , Oxigênio , Isótopos de Oxigênio/análise , China
2.
Proc Natl Acad Sci U S A ; 119(36): e2120770119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037334

RESUMO

The last two decades have seen a dramatic decline and strong year-to-year variability in Arctic winter sea ice, especially in the Barents-Kara Sea (BKS), changes that have been linked to extreme midlatitude weather and climate. It has been suggested that these changes in winter sea ice arise largely from a combined effect of oceanic and atmospheric processes, but the relative importance of these processes is not well established. Here, we explore the role of atmospheric circulation patterns on BKS winter sea ice variability and trends using observations and climate model simulations. We find that BKS winter sea ice variability is primarily driven by a strong anticyclonic anomaly over the region, which explains more than 50% of the interannual variability in BKS sea-ice concentration (SIC). Recent intensification of the anticyclonic anomaly has warmed and moistened the lower atmosphere in the BKS by poleward transport of moist-static energy and local processes, resulting in an increase in downwelling longwave radiation. Our results demonstrate that the observed BKS winter sea-ice variability is primarily driven by atmospheric, rather than oceanic, processes and suggest a persistent role of atmospheric forcing in future Arctic winter sea ice loss.


Assuntos
Atmosfera , Camada de Gelo , Regiões Árticas , Clima , Camada de Gelo/química , Oceanos e Mares , Estações do Ano , Tempo
3.
Geophys Res Lett ; 49(1): e2021GL095184, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865077

RESUMO

Squall lines are known to be the consequence of the interaction of low-level shear with cold pools associated with convective downdrafts. Also, as the magnitude of the shear increases beyond a critical shear, squall lines tend to orient themselves. The existing literature suggests that this orientation reduces incoming wind shear to the squall line, and maintains equilibrium between wind shear and cold pool spreading. Although this theory is widely accepted, very few quantitative studies have been conducted on supercritical regime especially. Here, we test this hypothesis with tropical squall lines obtained by imposing a vertical wind shear in cloud resolving simulations in radiative convective equilibrium. In the sub-critical regime, squall lines are perpendicular to the shear. In the super-critical regime, their orientation maintain the equilibrium, supporting existing theories. We also find that as shear increases, cold pools become more intense. However, this intensification has little impact on squall line orientation.

4.
Nat Commun ; 13(1): 2686, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562340

RESUMO

Atmospheric humidity and soil moisture in the Amazon forest are tightly coupled to the region's water balance, or the difference between two moisture fluxes, evapotranspiration minus precipitation (ET-P). However, large and poorly characterized uncertainties in both fluxes, and in their difference, make it challenging to evaluate spatiotemporal variations of water balance and its dependence on ET or P. Here, we show that satellite observations of the HDO/H2O ratio of water vapor are sensitive to spatiotemporal variations of ET-P over the Amazon. When calibrated by basin-scale and mass-balance estimates of ET-P derived from terrestrial water storage and river discharge measurements, the isotopic data demonstrate that rainfall controls wet Amazon water balance variability, but ET becomes important in regulating water balance and its variability in the dry Amazon. Changes in the drivers of ET, such as above ground biomass, could therefore have a larger impact on soil moisture and humidity in the dry (southern and eastern) Amazon relative to the wet Amazon.


Assuntos
Florestas , Vapor , Isótopos/análise , Rios , Solo
5.
J Adv Model Earth Syst ; 13(4): e2020MS002381, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33868576

RESUMO

We aim at developing a simple model as an interpretative framework for the water vapor isotopic variations in the tropical troposphere over the ocean. We use large-eddy simulations of disorganized convection in radiative-convective equilibrium to justify the underlying assumptions of this simple model, to constrain its input parameters and to evaluate its results. We also aim at interpreting the depletion of the water vapor isotopic composition in the lower and midtroposphere as precipitation increases, which is a salient feature in tropical oceanic observations. This feature constitutes a stringent test on the relevance of our interpretative framework. Previous studies, based on observations or on models with parameterized convection, have highlighted the roles of deep convective and mesoscale downdrafts, rain evaporation, rain-vapor diffusive exchanges, and mixing processes. The interpretative framework that we develop, valid in case of disorganized convection, is a two-column model representing the net ascent in clouds and the net descent in the environment. We show that the mechanisms for depleting the troposphere as the precipitation rate increases all stem from the higher tropospheric relative humidity. First, when the relative humidity is larger, less snow sublimates before melting and a smaller fraction of rain evaporates. Both effects lead to more depleted rain evaporation and eventually more depleted water vapor. This mechanism dominates in regimes of large-scale ascent. Second, the entrainment of dry air into clouds reduces the vertical isotopic gradient and limits the depletion of tropospheric water vapor. This mechanism dominates in regimes of large-scale descent.

6.
Nat Commun ; 12(1): 1519, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750823

RESUMO

Recent rapid Arctic sea-ice reduction has been well documented in observations, reconstructions and model simulations. However, the rate of sea ice loss is highly variable in both time and space. The western Arctic has seen the fastest sea-ice decline, with substantial interannual and decadal variability, but the underlying mechanism remains unclear. Here we demonstrate, through both observations and model simulations, that the Pacific North American (PNA) pattern is an important driver of western Arctic sea-ice variability, accounting for more than 25% of the interannual variance. Our results suggest that the recent persistent positive PNA pattern has led to increased heat and moisture fluxes from local processes and from advection of North Pacific airmasses into the western Arctic. These changes have increased lower-tropospheric temperature, humidity and downwelling longwave radiation in the western Arctic, accelerating sea-ice decline. Our results indicate that the PNA pattern is important for projections of Arctic climate changes, and that greenhouse warming and the resultant persistent positive PNA trend is likely to increase Arctic sea-ice loss.

7.
J Adv Model Earth Syst ; 12(8): e2020MS002106, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999707

RESUMO

The goal of this study is to understand the mechanisms controlling the isotopic composition of the water vapor near the surface of tropical oceans, at the scale of about a hundred kilometers and a month. In the tropics, it has long been observed that the isotopic compositions of rain and vapor near the surface are more depleted when the precipitation rate is high. This is called the "amount effect." Previous studies, based on observations or models with parameterized convection, have highlighted the roles of deep convective and mesoscale downdrafts and rain evaporation. But the relative importance of these processes has never been quantified. We hypothesize that it can be quantified using an analytical model constrained by large-eddy simulations. Results from large-eddy simulations confirm that the classical amount effect can be simulated only if precipitation rate changes result from changes in the large-scale circulation. We find that the main process depleting the water vapor compared to the equilibrium with the ocean is the fact that updrafts stem from areas where the water vapor is more enriched. The main process responsible for the amount effect is the fact that when the large-scale ascent increases, isotopic vertical gradients are steeper, so that updrafts and downdrafts deplete the subcloud layer more efficiently.

8.
Science ; 365(6459)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31604211

RESUMO

Valdes et al contest our results, suggesting failings in our modeling approach as well as in our comparison with data. Although their comment points to interesting ideas of improvement, we find that their critique reflects an incomplete understanding of our methods and is not supported by the material they provide.

9.
Science ; 363(6430)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819936

RESUMO

Paleotopographic reconstructions of the Tibetan Plateau based on stable isotope paleoaltimetry methods conclude that most of the Plateau's current elevation was already reached by the Eocene, ~40 million years ago. However, changes in atmospheric and hydrological dynamics affect oxygen stable isotopes in precipitation and may thus bias such reconstructions. We used an isotope-equipped general circulation model to assess the influence of changing Eocene paleogeography and climate on paleoelevation estimates. Our simulations indicate that stable isotope paleoaltimetry methods are not applicable in Eocene Asia because of a combination of increased convective precipitation, mixture of air masses, and widespread aridity. Rather, a model-data comparison suggests that the Tibetan Plateau only reached low to moderate (less than 3000 meters) elevations during the Eocene, reconciling oxygen isotope data with other proxies.

10.
Proc Natl Acad Sci U S A ; 114(32): 8481-8486, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28729375

RESUMO

Although it is well established that transpiration contributes much of the water for rainfall over Amazonia, it remains unclear whether transpiration helps to drive or merely responds to the seasonal cycle of rainfall. Here, we use multiple independent satellite datasets to show that rainforest transpiration enables an increase of shallow convection that moistens and destabilizes the atmosphere during the initial stages of the dry-to-wet season transition. This shallow convection moisture pump (SCMP) preconditions the atmosphere at the regional scale for a rapid increase in rain-bearing deep convection, which in turn drives moisture convergence and wet season onset 2-3 mo before the arrival of the Intertropical Convergence Zone (ITCZ). Aerosols produced by late dry season biomass burning may alter the efficiency of the SCMP. Our results highlight the mechanisms by which interactions among land surface processes, atmospheric convection, and biomass burning may alter the timing of wet season onset and provide a mechanistic framework for understanding how deforestation extends the dry season and enhances regional vulnerability to drought.

11.
Rev Geophys ; 54(4): 809-865, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32661517

RESUMO

The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term datasets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in-situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water- and ice-size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

12.
Nat Commun ; 5: 3701, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739337

RESUMO

The Pacific North American (PNA) teleconnection has a strong influence on North American climate. Instrumental records and century-scale reconstructions indicate an accelerating tendency towards the positive PNA state since the mid-1850s, but much less is known about long-term PNA variability. Here we reconstruct PNA-like climate variability during the mid- and late Holocene using paired oxygen isotope records from two regions in North America with robust, anticorrelated isotopic response to the modern PNA. We identify mean states of more negative and positive PNA-like climate during the mid- and late Holocene, respectively. Superimposed on the secular change between states is a robust, quasi-200-year oscillation, which we associate with the de Vries solar cycle. These findings suggest the persistence of PNA-like climate variability throughout the mid- and late Holocene, provide evidence for modulation of PNA over multiple timescales and may help researchers de-convolve PNA pattern variation from other factors reflected in palaeorecords.


Assuntos
Atmosfera/química , Modelos Teóricos , Isótopos de Oxigênio/análise , Atividade Solar , História Antiga , América do Norte , Chuva
13.
Proc Natl Acad Sci U S A ; 110(44): 17674-9, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23798406

RESUMO

Combined measurements of water isotopologues of a snow pit at Vostok over the past 60 y reveal a unique signature that cannot be explained only by climatic features as usually done. Comparisons of the data using a general circulation model and a simpler isotopic distillation model reveal a stratospheric signature in the (17)O-excess record at Vostok. Our data and theoretical considerations indicate that mass-independent fractionation imprints the isotopic signature of stratospheric water vapor, which may allow for a distinction between stratospheric and tropospheric influences at remote East Antarctic sites.


Assuntos
Atmosfera/análise , Modelos Químicos , Neve/química , Vapor/análise , Regiões Antárticas , Berílio , Simulação por Computador , Isótopos/química , Vento
14.
Proc Natl Acad Sci U S A ; 110(22): 8813-8, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671087

RESUMO

The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.


Assuntos
Mudança Climática/história , Modelos Químicos , Temperatura , Ciclo Hidrológico , Exoesqueleto/química , Animais , Isótopos de Carbono/análise , China , Simulação por Computador , Gastrópodes/química , História Antiga , Camada de Gelo , Isótopos de Oxigênio/análise , Solo/análise , Termometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...