Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rev Mar Sci ; 16: 443-466, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552896

RESUMO

The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.


Assuntos
Biodiversidade , Simbiose
3.
Anim Microbiome ; 4(1): 17, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246276

RESUMO

BACKGROUND: Sharks play essential roles in ocean food webs and human culture, but also face population declines worldwide due to human activity. The relationship between sharks and the microbes on and in the shark body is unclear, despite research on other animals showing the microbiome as intertwined with host physiology, immunity, and ecology. Research on shark-microbe interactions faces the significant challenge of sampling the largest and most elusive shark species. We leveraged a unique sampling infrastructure to compare the microbiomes of two apex predators, the white (Carcharodon carcharias) and tiger shark (Galeocerdo cuvier), to those of the filter-feeding whale shark (Rhincodon typus), allowing us to explore the effects of feeding mode on intestinal microbiome diversity and metabolic function, and environmental exposure on the diversity of microbes external to the body (on the skin, gill). RESULTS: The fecal microbiomes of white and whale sharks were highly similar in taxonomic and gene category composition despite differences in host feeding mode and diet. Fecal microbiomes from these species were also taxon-poor compared to those of many other vertebrates and were more similar to those of predatory teleost fishes and toothed whales than to those of filter-feeding baleen whales. In contrast, microbiomes of external body niches were taxon-rich and significantly influenced by diversity in the water column microbiome. CONCLUSIONS: These results suggest complex roles for host identity, diet, and environmental exposure in structuring the shark microbiome and identify a small, but conserved, number of intestinal microbial taxa as potential contributors to shark physiology.

4.
R Soc Open Sci ; 9(3): 211591, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316949

RESUMO

Metazoans host complex communities of microorganisms that include dinoflagellates, fungi, bacteria, archaea and viruses. Interactions among members of these complex assemblages allow hosts to adjust their physiology and metabolism to cope with environmental variation and occupy different habitats. Here, using reciprocal transplantation across depths, we studied adaptive divergence in the corals Orbicella annularis and O. franksi, two young species with contrasting vertical distribution in the Caribbean. When transplanted from deep to shallow, O. franksi experienced fast photoacclimation and low mortality, and maintained a consistent bacterial community. By contrast, O. annularis experienced high mortality and limited photoacclimation when transplanted from shallow to deep. The photophysiological collapse of O. annularis in the deep environment was associated with an increased microbiome variability and reduction of some bacterial taxa. Differences in the symbiotic algal community were more pronounced between coral species than between depths. Our study suggests that these sibling species are adapted to distinctive light environments partially driven by the algae photoacclimation capacity and the microbiome robustness, highlighting the importance of niche specialization in symbiotic corals for the maintenance of species diversity. Our findings have implications for the management of these threatened Caribbean corals and the effectiveness of coral reef restoration efforts.

5.
Microb Ecol ; 84(3): 703-716, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596709

RESUMO

Seagrass meadows are hotspots of biodiversity with considerable economic and ecological value. The health of seagrass ecosystems is influenced in part by the makeup and stability of their microbiome, but microbiome composition can be sensitive to environmental change such as nutrient availability, elevated temperatures, and reduced pH. The objective of the present study was to characterize the bacterial community of the leaves, bulk samples of roots and rhizomes, and proximal sediment of the seagrass species Cymodocea nodosa along the natural pH gradient of Levante Bay, Vulcano Island, Italy. The bacterial community was determined by characterizing the 16S rRNA amplicon sequencing and analyzing the operational taxonomic unit classification of bacterial DNA within samples. Statistical analyses were used to explore how life-long exposure to different pH/pCO2 conditions may be associated with significant differences in microbial communities, dominant bacterial classes, and microbial diversity within each plant section and sediment. The microbiome of C. nodosa significantly differed among all sample types and site-specific differences were detected within sediment and root/rhizome microbial communities, but not the leaves. These results show that C. nodosa leaves have a consistent microbial community even across a pH range of 8.15 to 6.05. The ability for C. nodosa to regulate and maintain microbial structure may indicate a semblance of resilience within these vital ecosystems under projected changes in environmental conditions such as ocean acidification.


Assuntos
Microbiota , Rizoma , Rizoma/química , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Concentração de Íons de Hidrogênio , Força Próton-Motriz , Bactérias/genética
6.
Anim Microbiome ; 3(1): 61, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526135

RESUMO

Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch-microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.

7.
Sci Adv ; 5(10): eaay1048, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31616794

RESUMO

Bleaching and disease are decimating coral reefs especially when warming promotes bleaching pathogens, such as Vibrio coralliilyticus. We demonstrate that sterilized washes from three common corals suppress V. coralliilyticus but that this defense is compromised when assays are run at higher temperatures. For a coral within the ecologically critical genus Acropora, inhibition was 75 to 154% greater among colonies from coral-dominated marine protected areas versus adjacent fished areas that were macroalgae-dominated. Acropora microbiomes were more variable within fished areas, suggesting that reef degradation may also perturb coral microbial communities. Defenses of a robust poritid coral and a weedy pocilloporid coral were not affected by reef degradation, and microbiomes were unaltered for these species. For some ecologically critical, but bleaching-susceptible, corals such as Acropora, local management to improve reef state may bolster coral resistance to global change, such as bacteria-induced coral bleaching during warming events.


Assuntos
Antozoários/imunologia , Antozoários/microbiologia , Temperatura , Vibrio/fisiologia , Animais , Análise de Componente Principal , Água
8.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437114

RESUMO

Dietzia sp. strain WMMA184 was isolated from the marine coral Montastraea faveolata as part of ongoing drug discovery efforts. Analysis of the 4.16-Mb genome provides information regarding interspecies interactions as it pertains to the regulation of secondary metabolism and natural product biosynthesis potential.

9.
Front Microbiol ; 8: 1050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725216

RESUMO

Elasmobranchs represent a distinct group of cartilaginous fishes that harbor a remarkable ability to heal wounds rapidly and without infection. To date very little work has addressed this phenomenon although it is suggested that antibiotic capabilities associated with epidermal surfaces may be a factor. The study of benefits derived from mutualistic interactions between unicellular and multicellular organisms is a rapidly growing area of research. Here we survey and identify bacterial associates of three ray and one skate species in order to assess the potential for antibiotic production from elasmobranch associated bacteria as a novel source for new antibiotics.

10.
PLoS One ; 12(6): e0178869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570712

RESUMO

Black band is a deadly coral disease found worldwide, which may become more virulent as oceanic conditions continue to change. To determine the effects of climate change and ocean acidification on black band disease virulence, Orbicella faveolata corals with black band were exposed to different temperature and pH conditions. Results showed a significant decrease in disease progression under low pH (7.7) conditions. Low pH also altered the relative abundance of the bacterial community of the black band disease consortium. Here, there was a significant decrease in Roseofilum, the cyanobacterium that typically dominates the black band mat. These results indicate that as oceanic pH decreases so may the virulence of a worldwide coral disease.


Assuntos
Antozoários/microbiologia , Cianobactérias/patogenicidade , Concentração de Íons de Hidrogênio , Animais , Virulência
11.
Sci Rep ; 6: 37387, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876762

RESUMO

Increasing levels of pCO2 within the oceans will select for resistant organisms such as anemones, which may thrive under ocean acidification conditions. However, increasing pCO2 may alter the bacterial community of marine organisms, significantly affecting the health status of the host. A pH gradient associated with a natural volcanic vent system within Levante Bay, Vulcano Island, Italy, was used to test the effects of ocean acidification on the bacterial community of two anemone species in situ, Anemonia viridis and Actinia equina using 16 S rDNA pyrosequencing. Results showed the bacterial community of the two anemone species differed significantly from each other primarily because of differences in the Gammaproteobacteria and Epsilonproteobacteria abundances. The bacterial communities did not differ within species among sites with decreasing pH except for A. viridis at the vent site (pH = 6.05). In addition to low pH, the vent site contains trace metals and sulfide that may have influenced the bacteria community of A. viridis. The stability of the bacterial community from pH 8.1 to pH 7.4, coupled with previous experiments showing the lack of, or beneficial changes within anemones living under low pH conditions indicates that A. viridis and A. equina will be winners under future ocean acidification scenarios.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Dióxido de Carbono/toxicidade , Microbiota/fisiologia , Anêmonas-do-Mar/crescimento & desenvolvimento , Animais , Organismos Aquáticos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Microbiota/efeitos dos fármacos , Oceanos e Mares , Anêmonas-do-Mar/efeitos dos fármacos , Água do Mar/química
12.
Stand Genomic Sci ; 10: 75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451236

RESUMO

Members of the gammaproteobacterial genus Halomonas are common in marine environments. Halomonas and other members of the Oceanospirillales have recently been identified as prominent members of the surface microbiota of reef-building corals. Halomonas meridiana strain R1t3 was isolated from the surface mucus layer of the scleractinian coral Acropora palmata in 2005 from the Florida Keys. This strain was chosen for genome sequencing to provide insight into the role of commensal heterotrophic bacteria in the coral holobiont. The draft genome consists of 290 scaffolds, totaling 3.5 Mbp in length and contains 3397 protein-coding genes.

13.
Environ Microbiol Rep ; 6(3): 287-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24983533

RESUMO

Coral reefs are under increasing stress caused by global and local environmental changes, which are thought to increase the susceptibility of corals to opportunistic pathogens. In the absence of an easily culturable model animal, the understanding of the mechanisms of disease progression in corals remains fairly limited. In the present study, we tested the susceptibility of the tropical sea anemone Aiptasia pallida to an opportunistic coral pathogen (Serratia marcescens). A. pallida was susceptible to S. marcescens PDL100 and responded to this opportunistic coral pathogen with darkening of the tissues and retraction of tentacles, followed by complete disintegration of polyp tissues. Histological observations revealed loss of zooxanthellae and structural changes in eosinophilic granular cells in response to pathogen infection. A screen of S. marcescens mutants identified a motility and tetrathionate reductase mutants as defective in virulence in the A. pallida infection model. In co-infections with the wild-type strain, the tetrathionate reductase mutant was less fit within the surface mucopolysaccharide layer of the host coral Acropora palmata.


Assuntos
Interações Hospedeiro-Patógeno , Anêmonas-do-Mar/microbiologia , Serratia marcescens/fisiologia , Animais , Recifes de Corais , Mutação , Infecções por Serratia/microbiologia , Infecções por Serratia/patologia , Serratia marcescens/patogenicidade , Clima Tropical , Virulência/genética
14.
Microb Ecol ; 68(2): 388-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24619233

RESUMO

Incidents of coral disease are on the rise. However, in the absence of a surrogate animal host, understanding of the interactions between coral pathogens and their hosts remains relatively limited, compared to other pathosystems of similar global importance. A tropical sea anemone, Aiptasia pallida, has been investigated as a surrogate model to study certain aspects of coral biology. Therefore, to test whether the utility of this surrogate model can be extended to study coral diseases, in the present study, we tested its susceptibility to common coral pathogens (Vibrio coralliilyticus and Vibrio shiloi) as well as polymicrobial consortia recovered from the Caribbean Yellow Band Disease (CYBD) lesions. A. pallida was susceptible to each of the tested pathogens. A. pallida responded to the pathogens with darkening of the tissues (associated with an increased melanization) and retraction of tentacles, followed by complete disintegration of polyp tissues. Loss of zooxanthellae was not observed; however, the disease progression pattern is consistent with the behavior of necrotizing pathogens. Virulence of some coral pathogens in Aiptasia was paralleled with their glycosidase activities.


Assuntos
Anêmonas-do-Mar/microbiologia , Vibrio/patogenicidade , Animais , Antozoários/microbiologia , Interações Hospedeiro-Patógeno , Melaninas/biossíntese , Consórcios Microbianos , Anêmonas-do-Mar/metabolismo , Estresse Fisiológico , Temperatura , Virulência
15.
Microb Ecol ; 67(2): 392-401, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370863

RESUMO

Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.


Assuntos
Antozoários/microbiologia , Temperatura , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo , Animais , Quitinases/metabolismo , Técnicas de Cocultura , Glicosídeo Hidrolases/metabolismo , Peptídeo Hidrolases/metabolismo , Simbiose , Vibrio/isolamento & purificação , Fatores de Virulência/metabolismo
16.
Proc Biol Sci ; 280(1755): 20122328, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23363627

RESUMO

Over the last decade, significant advances have been made in characterization of the coral microbiota. Shifts in its composition often correlate with the appearance of signs of diseases and/or bleaching, thus suggesting a link between microbes, coral health and stability of reef ecosystems. The understanding of interactions in coral-associated microbiota is informed by the on-going characterization of other microbiomes, which suggest that metabolic pathways and functional capabilities define the 'core' microbiota more accurately than the taxonomic diversity of its members. Consistent with this hypothesis, there does not appear to be a consensus on the specificity in the interactions of corals with microbial commensals, even though recent studies report potentially beneficial functions of the coral-associated bacteria. They cycle sulphur, fix nitrogen, produce antimicrobial compounds, inhibit cell-to-cell signalling and disrupt virulence in opportunistic pathogens. While their beneficial functions have been documented, it is not certain whether or how these microbes are selected by the hosts. Therefore, understanding the role of innate immunity, signal and nutrient exchange in the establishment of coral microbiota and in controlling its functions will probably reveal ancient, evolutionarily conserved mechanisms that dictate the outcomes of host-microbial interactions, and impact the resilience of the host.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Fenômenos Fisiológicos Bacterianos , Dinoflagellida/fisiologia , Simbiose , Animais , Recifes de Corais
17.
PLoS One ; 8(1): e45574, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326298

RESUMO

Acute catastrophic events can cause significant damage to marine environments in a short time period and may have devastating long-term impacts. In April 2010 the BP-operated Deepwater Horizon (DWH) offshore oil rig exploded, releasing an estimated 760 million liters of crude oil into the Gulf of Mexico. This study examines the potential effects of oil spill exposure on coral larvae of the Florida Keys. Larvae of the brooding coral, Porites astreoides, and the broadcast spawning coral, Montastraea faveolata, were exposed to multiple concentrations of BP Horizon source oil (crude, weathered and WAF), oil in combination with the dispersant Corexit® 9500 (CEWAF), and dispersant alone, and analyzed for behavior, settlement, and survival. Settlement and survival of P. astreoides and M. faveolata larvae decreased with increasing concentrations of WAF, CEWAF and Corexit® 9500, however the degree of the response varied by species and solution. P. astreoides larvae experienced decreased settlement and survival following exposure to 0.62 ppm source oil, while M. faveolata larvae were negatively impacted by 0.65, 1.34 and 1.5 ppm, suggesting that P. astreoides larvae may be more tolerant to WAF exposure than M. faveolata larvae. Exposure to medium and high concentrations of CEWAF (4.28/18.56 and 30.99/35.76 ppm) and dispersant Corexit® 9500 (50 and 100 ppm), significantly decreased larval settlement and survival for both species. Furthermore, exposure to Corexit® 9500 resulted in settlement failure and complete larval mortality after exposure to 50 and 100 ppm for M. faveolata and 100 ppm for P. astreoides. These results indicate that exposure of coral larvae to oil spill related contaminants, particularly the dispersant Corexit® 9500, has the potential to negatively impact coral settlement and survival, thereby affecting the resilience and recovery of coral reefs following exposure to oil and dispersants.


Assuntos
Antozoários/efeitos dos fármacos , Lipídeos/toxicidade , Poluição por Petróleo/análise , Petróleo/toxicidade , Análise de Variância , Animais , Antozoários/classificação , Antozoários/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Florida , Golfo do México , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Modelos Lineares , Especificidade da Espécie , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
18.
FEMS Microbiol Ecol ; 84(2): 290-301, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23278392

RESUMO

Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii.


Assuntos
Antozoários/microbiologia , Proteínas de Bactérias/fisiologia , Serratia marcescens/patogenicidade , Animais , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Movimento , Muco/microbiologia , Mutação , Serratia marcescens/genética , Serratia marcescens/metabolismo , Virulência
19.
ISME J ; 7(5): 980-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23254513

RESUMO

The outcome of the interactions between native commensal microorganisms and opportunistic pathogens is crucial to the health of the coral holobiont. During the establishment within the coral surface mucus layer, opportunistic pathogens, including a white pox pathogen Serratia marcescens PDL100, compete with native bacteria for available nutrients. Both commensals and pathogens employ glycosidases and N-acetyl-glucosaminidase to utilize components of coral mucus. This study tested the hypothesis that specific glycosidases were critical for the growth of S. marcescens on mucus and that their inhibition by native coral microbiota reduces fitness of the pathogen. Consistent with this hypothesis, a S. marcescens transposon mutant with reduced glycosidase and N-acetyl-glucosaminidase activities was unable to compete with the wild type on the mucus of the host coral Acropora palmata, although it was at least as competitive as the wild type on a minimal medium with glycerol and casamino acids. Virulence of the mutant was modestly reduced in the Aiptasia model. A survey revealed that ∼8% of culturable coral commensal bacteria have the ability to inhibit glycosidases in the pathogen. A small molecular weight, ethanol-soluble substance(s) produced by the coral commensal Exiguobacterium sp. was capable of the inhibition of the induction of catabolic enzymes in S. marcescens. This inhibition was in part responsible for the 10-100-fold reduction in the ability of the pathogen to grow on coral mucus. These results provide insight into potential mechanisms of commensal interference with early colonization and infection behaviors in opportunistic pathogens and highlight an important function for the native microbiota in coral health.


Assuntos
Antozoários/microbiologia , Antibiose , Bacillales/metabolismo , Serratia marcescens/crescimento & desenvolvimento , Acetilglucosaminidase/metabolismo , Animais , Antozoários/fisiologia , Bacillales/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Anêmonas-do-Mar/microbiologia , Serratia marcescens/genética , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Simbiose , Virulência
20.
Biol Bull ; 223(1): 66-77, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22983033

RESUMO

Recent research has explored the possibility that increased sea-surface temperatures and decreasing pH (ocean acidification) contribute to the ongoing decline of coral reef ecosystems. Within corals, a diverse microbiome exerts significant influence on biogeochemical and ecological processes, including food webs, organismal life cycles, and chemical and nutrient cycling. Microbes on coral reefs play a critical role in regulating larval recruitment, bacterial colonization, and pathogen abundance under ambient conditions, ultimately governing the overall resilience of coral reef systems. As a result, microbial processes may be involved in reef ecosystem-level responses to climate change. Developments of new molecular technologies, in addition to multidisciplinary collaborative research on coral reefs, have led to the rapid advancement in our understanding of bacterially mediated reef responses to environmental change. Here we review new discoveries regarding (1) the onset of coral-bacterial associations; (2) the functional roles that bacteria play in healthy corals; and (3) how bacteria influence coral reef response to environmental change, leading to a model describing how reef microbiota direct ecosystem-level response to a changing global climate.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Mudança Climática , Simbiose , Animais , Ecossistema , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA