Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Sex Behav ; 53(5): 1859-1871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38216784

RESUMO

Self-reported sexual orientation of transgender individuals occasionally changes over transition. Using functional magnetic resonance imaging, we tested the hypothesis that neural and behavioral patterns of sexual arousal in transgender individuals would shift from the assigned to the experienced gender (e.g., trans women's responses becoming more dissimilar to those of cis men and more similar to those of cis women). To this aim, trans women (N = 12) and trans men (N = 20) as well as cisgender women (N = 24) and cisgender men (N = 14) rated visual stimuli showing male-female, female-female or male-male intercourse for sexual arousal before and after four months of gender-affirming hormone therapy. A Bayesian framework allowed us to incorporate previous behavioral findings. The hypothesized changes could indeed be observed in the behavioral responses with the strongest results for trans men and female-female scenes. Activation of the ventral striatum supported our hypothesis only for female-female scenes in trans women. The respective application or depletion of androgens in trans men and trans women might partly explain this observation. The prominent role of female-female stimuli might be based on the differential responses they elicit in cis women and men or, in theory, the controversial concept of autogynephilia. We show that correlates of sexual arousal in transgender individuals might change in the direction of the experienced gender. Future investigations should elucidate the mechanistic role of sex hormones and the cause of the differential neural and behavioral findings.The study was registered at ClinicalTrials.gov (NCT02715232), March 22, 2016.


Assuntos
Teorema de Bayes , Disforia de Gênero , Imageamento por Ressonância Magnética , Excitação Sexual , Pessoas Transgênero , Humanos , Masculino , Feminino , Adulto , Disforia de Gênero/psicologia , Disforia de Gênero/tratamento farmacológico , Pessoas Transgênero/psicologia , Comportamento Sexual/efeitos dos fármacos , Comportamento Sexual/psicologia , Adulto Jovem , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/diagnóstico por imagem
2.
Neuroimage ; 249: 118887, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999203

RESUMO

An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.


Assuntos
Aprendizagem por Associação , Conectoma , Córtex Insular , Rede Nervosa , Plasticidade Neuronal , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Citalopram/farmacologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Humanos , Córtex Insular/diagnóstico por imagem , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiologia , Descanso , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto Jovem
3.
Neuroimage ; 247: 118829, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923134

RESUMO

Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.


Assuntos
Escitalopram/farmacologia , Aprendizagem/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Áustria , Método Duplo-Cego , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Rememoração Mental/efeitos dos fármacos , Modelos Estatísticos
4.
J Cereb Blood Flow Metab ; 41(11): 2986-2999, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34078145

RESUMO

Mapping the neuronal response during cognitive processing is of crucial importance to gain new insights into human brain function. BOLD imaging and ASL are established MRI methods in this endeavor. Recently, the novel approach of functional PET (fPET) was introduced, enabling absolute quantification of glucose metabolism at rest and during task execution in a single measurement. Here, we report test-retest reliability of fPET in direct comparison to BOLD imaging and ASL. Twenty healthy subjects underwent two PET/MRI measurements, providing estimates of glucose metabolism, cerebral blood flow (CBF) and blood oxygenation. A cognitive task was employed with different levels of difficulty requiring visual-motor coordination. Task-specific neuronal activation was robustly detected with all three imaging approaches. The highest reliability was obtained for glucose metabolism at rest. Although this dropped during task performance it was still comparable to that of CBF. In contrast, BOLD imaging yielded high performance only for qualitative spatial overlap of task effects but not for quantitative comparison. Hence, the combined assessment of fPET and ASL offers reliable and simultaneous absolute quantification of glucose metabolism and CBF at rest and task.


Assuntos
Mapeamento Encefálico/métodos , Cognição/fisiologia , Saturação de Oxigênio/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Adulto , Mapeamento Encefálico/estatística & dados numéricos , Circulação Cerebrovascular/fisiologia , Estudos de Avaliação como Assunto , Feminino , Glucose/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Marcadores de Spin , Análise e Desempenho de Tarefas
5.
Front Psychiatry ; 11: 549903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101078

RESUMO

INTRODUCTION: Converging evidence suggests that ketamine elicits antidepressant effects via enhanced neuroplasticity precipitated by a surge of glutamate and modulation of GABA. Magnetic resonance spectroscopic imaging (MRSI) illustrates changes to cerebral glutamate and GABA immediately following ketamine administration during dissociation. However, few studies assess subacute changes in the first hours following application, when ketamine's antidepressant effects emerge. Moreover, ketamine metabolites implicated in its antidepressant effects develop during this timeframe. Thus, this study aimed to investigate subacute changes in cerebral Glx (glutamate + glutamine), GABA and their ratio in seven brain regions central to depressive pathophysiology and treatment. METHODS: Twenty-five healthy subjects underwent two multivoxel MRS scans using a spiral encoded, MEGA-edited LASER-localized 3D-MRSI sequence, at baseline and 2 h following intravenous administration of racemic ketamine (0.8 mg/kg bodyweight over 50 min). Ketamine, norketamine and dehydronorketamine plasma levels were determined at routine intervals during and after infusion. Automated region-of-interest (ROI)-based quantification of mean metabolite concentration was used to assess changes in GABA+/total creatine (tCr), Glx/tCr, and GABA+/Glx ratios in the thalamus, hippocampus, insula, putamen, rostral anterior cingulate cortex (ACC), caudal ACC, and posterior cingulate cortex. Effects of ketamine on neurotransmitter levels and association with ketamine- and metabolite plasma levels were tested with repeated measures analyses of variance (rmANOVA) and correlation analyses, respectively. RESULTS: For GABA+/tCr rmANOVA revealed a measurement by region interaction effect (puncorr < 0.001) and post hoc pairwise comparisons showed a reduction in hippocampal GABA+/tCr after ketamine (pcorr = 0.02). For Glx/tCr and GABA+/Glx neither main effects of measurement nor measurement by region interactions were observed (all puncorr > 0.05). Furthermore, no statistically significant associations between changes in any of the neurotransmitter ratios and plasma levels of ketamine, norketamine, or dehydronorketamine were observed (pcorr > 0.05). CONCLUSION: This study provides evidence for decreased hippocampal GABA+/tCr ratio 2 h following ketamine administration. As MRS methodology measures total levels of intra- and extracellular GABA, results might indicate drug induced alterations in GABA turnover. Our study in healthy humans suggests that changes in GABA levels, particularly in the hippocampus, should be further assessed for their relevance to ketamine´s antidepressant effects.

6.
Cortex ; 129: 68-79, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438011

RESUMO

Investigating the effects of the gender-affirming hormone treatment of transgender people using neuroimaging provides a unique opportunity to study the impact of high dosages of sex hormones on human brain structure and function. This line of research is of relevance from a basic neuroscientific as well as from a psychiatric viewpoint. Prevalence rates, etiopathology, and disease course of many psychiatric disorders exhibit sex differences which are linked to differences in sex hormone levels. Here, we review recent neuroimaging studies from others and our group that investigate the effects of gender-affirming hormone treatment in a longitudinal design utilizing structural and functional magnetic resonance imaging and positron emission tomography. Studies point to a general anabolic and anticatabolic effect of testosterone on grey and white matter structure, whereas estradiol and antiandrogen treatment seems to have partly opposite effects. Moreover, preliminary research indicates that gender-affirming hormone treatment influences serotonergic neurotransmission, a finding that is especially interesting for psychiatry. A clear picture of a hormonal influence on brain activity has yet to emerge. In conclusion, the available evidence reviewed here clearly indicates that sex hormone applications influence brain structure and function in the adult human brain.


Assuntos
Identidade de Gênero , Pessoas Transgênero , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Hormônios Esteroides Gonadais , Humanos , Masculino , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...