Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 35(1): 174-186, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28726571

RESUMO

Previous work in this laboratory used underwater explosive exposures to isolate the effects of shock-induced principle stress without shear on rat brain aggregate cultures. The current study has utilized simulated air blast to expose aggregates in suspension and enclosed within a spherical shell, enabling the examination of a much more complex biomechanical insult. Culture medium-filled spheres were exposed to single pulse overpressures of 15-30 psi (∼6-7 msec duration) and measurements within the sphere at defined sites showed complex and spatially dependent pressure changes. When brain aggregates were exposed to similar conditions, no cell death was observed and no changes in several commonly used biomarkers of traumatic brain injury (TBI) were noted. However, similarly to underwater blast, immediate and transient increases in the protein kinase B signaling pathway were observed at early time-points (3 days). In contrast, the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase, as well as vascular endothelial growth factor, both displayed markedly delayed (14-28 days) and pressure-dependent responses. The imposition of a spherical shell between the single pulse shock wave and the target brain tissue introduces greatly increased complexity to the insult. This work shows that brain tissue can not only discriminate the nature of the pressure changes it experiences, but that a portion of its response is significantly delayed. These results have mechanistic implications for the study of primary blast-induced TBI and also highlight the importance of rigorously characterizing the actual pressure variations experienced by target tissue in primary blast studies.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Animais , Lesões Encefálicas Traumáticas/etiologia , Morte Celular , Técnicas In Vitro , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
2.
J Neurotrauma ; 33(13): 1181-93, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26582146

RESUMO

The role of primary blast in blast-induced traumatic brain injury (bTBI) is controversial in part due to the technical difficulties of generating free-field blast conditions in the laboratory. The use of traditional shock tubes often results in artifacts, particularly of dynamic pressure, whereas the forces affecting the head are dependent on where the animal is placed relative to the tube, whether the exposure is whole-body or head-only, and on how the head is actually exposed to the insult (restrained or not). An advanced blast simulator (ABS) has been developed that enables high-fidelity simulation of free-field blastwaves, including sharply defined static and dynamic overpressure rise times, underpressures, and secondary shockwaves. Rats were exposed in head-only fashion to single-pulse blastwaves of 15 to 30 psi static overpressure. Head restraints were configured so as to eliminate concussive and minimize whiplash forces exerted on the head, as shown by kinematic analysis. No overt signs of trauma were present in the animals post-exposure. However, significant changes in brain 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) and neurofilament heavy chain levels were evident by 7 days. In contrast to most studies of primary blast-induced TBI (PbTBI), no elevation of glial fibrillary acidic protein (GFAP) levels was noted when head movement was minimized. The ABS described in this article enables the generation of shockwaves highly representative of free-field blast. The use of this technology, in concert with head-only exposure, minimized head movement, and the kinematic analysis of the forces exerted on the head provide convincing evidence that primary blast directly causes changes in brain function and that GFAP may not be an appropriate biomarker of PbTBI.


Assuntos
Biomarcadores , Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Equipamentos e Provisões , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Neurotrauma ; 30(11): 920-37, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496248

RESUMO

Abstract Explosive blast-induced traumatic brain injury (TBI) is the signature insult in modern combat casualty care and has been linked to post-traumatic stress disorder, memory loss, and chronic traumatic encephalopathy. In this article we report on blast-induced mild TBI (mTBI) characterized by fiber-tract degeneration and axonal injury revealed by cupric silver staining in adult male rats after head-only exposure to 35 psi in a helium-driven shock tube with head restraint. We now explore pathways of secondary injury and repair using biochemical/molecular strategies. Injury produced ∼25% mortality from apnea. Shams received identical anesthesia exposure. Rats were sacrificed at 2 or 24 h, and brain was sampled in the hippocampus and prefrontal cortex. Hippocampal samples were used to assess gene array (RatRef-12 Expression BeadChip; Illumina, Inc., San Diego, CA) and oxidative stress (OS; ascorbate, glutathione, low-molecular-weight thiols [LMWT], protein thiols, and 4-hydroxynonenal [HNE]). Cortical samples were used to assess neuroinflammation (cytokines, chemokines, and growth factors; Luminex Corporation, Austin, TX) and purines (adenosine triphosphate [ATP], adenosine diphosphate, adenosine, inosine, 2'-AMP [adenosine monophosphate], and 5'-AMP). Gene array revealed marked increases in astrocyte and neuroinflammatory markers at 24 h (glial fibrillary acidic protein, vimentin, and complement component 1) with expression patterns bioinformatically consistent with those noted in Alzheimer's disease and long-term potentiation. Ascorbate, LMWT, and protein thiols were reduced at 2 and 24 h; by 24 h, HNE was increased. At 2 h, multiple cytokines and chemokines (interleukin [IL]-1α, IL-6, IL-10, and macrophage inflammatory protein 1 alpha [MIP-1α]) were increased; by 24 h, only MIP-1α remained elevated. ATP was not depleted, and adenosine correlated with 2'-cyclic AMP (cAMP), and not 5'-cAMP. Our data reveal (1) gene-array alterations similar to disorders of memory processing and a marked astrocyte response, (2) OS, (3) neuroinflammation with a sustained chemokine response, and (4) adenosine production despite lack of energy failure-possibly resulting from metabolism of 2'-3'-cAMP. A robust biochemical/molecular response occurs after blast-induced mTBI, with the body protected from blast and the head constrained to limit motion.


Assuntos
Traumatismos por Explosões/metabolismo , Lesões Encefálicas/metabolismo , Transcriptoma , Animais , Traumatismos por Explosões/genética , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas/genética , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Regeneração Nervosa/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley
4.
J Neurotrauma ; 29(12): 2143-71, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22655746

RESUMO

Blast injury is the most prevalent source of mortality and morbidity among combatants in Operations Iraqi and Enduring Freedom. Blast-induced neurotrauma (BINT) is a common cause of mortality, and even mild BINT may be associated with chronic cognitive and emotional deficits. In addition to military personnel, the increasing use of explosives by terrorists has resulted in growing numbers of blast injuries in civilian populations. Since the medical and rehabilitative communities are likely to be faced with increasing numbers of patients suffering from blast injury, the 2010 Galveston Brain Injury Conference focused on topics related to the diagnosis, treatment, and mechanisms of BINT. Although past military actions have resulted in large numbers of blast casualties, BINT is considered the signature injury of the conflicts in Iraq and Afghanistan. The attention focused on BINT has led to increased financial support for research on blast effects, contributing to the development of better experimental models of blast injury and a clearer understanding of the mechanisms of BINT. This more thorough understanding of blast injury mechanisms will result in novel and more effective therapeutic and rehabilitative strategies designed to reduce injury and facilitate recovery, thereby improving long-term outcomes in patients suffering from the devastating and often lasting effects of BINT. The following is a summary of the 2010 Galveston Brain Injury Conference, that included presentations related to the diagnosis and treatment of acute BINT, the evaluation of the long-term neuropsychological effects of BINT, summaries of current experimental models of BINT, and a debate about the relative importance of primary blast effects on the acute and long-term consequences of blast exposure.


Assuntos
Traumatismos por Explosões/terapia , Lesões Encefálicas/terapia , Axônios/patologia , Traumatismos por Explosões/patologia , Traumatismos por Explosões/psicologia , Barreira Hematoencefálica/lesões , Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/psicologia , Doença Crônica , Serviços Médicos de Emergência , Explosões , Humanos , Inflamação/patologia , Guerra do Iraque 2003-2011 , Militares , Modelos Neurológicos , Exame Neurológico , Neurônios/patologia , Testes Neuropsicológicos , Guerra
5.
J Neurotrauma ; 28(6): 947-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21449683

RESUMO

Blast-induced traumatic brain injury (TBI) is the signature insult in combat casualty care. Survival with neurological damage from otherwise lethal blast exposures has become possible with body armor use. We characterized the neuropathologic alterations produced by a single blast exposure in rats using a helium-driven shock tube to generate a nominal exposure of 35 pounds per square inch (PSI) (positive phase duration ∼ 4 msec). Using an IACUC-approved protocol, isoflurane-anesthetized rats were placed in a steel wedge (to shield the body) 7 feet inside the end of the tube. The left side faced the blast wave (with head-only exposure); the wedge apex focused a Mach stem onto the rat's head. The insult produced ∼ 25% mortality (due to impact apnea). Surviving and sham rats were perfusion-fixed at 24 h, 72 h, or 2 weeks post-blast. Neuropathologic evaluations were performed utilizing hematoxylin and eosin, amino cupric silver, and a variety of immunohistochemical stains for amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), ED1, and rat IgG. Multifocal axonal degeneration, as evidenced by staining with amino cupric silver, was present in all blast-exposed rats at all time points. Deep cerebellar and brainstem white matter tracts were most heavily stained with amino cupric silver, with the morphologic staining patterns suggesting a process of diffuse axonal injury. Silver-stained sections revealed mild multifocal neuronal death at 24 h and 72 h. GFAP, ED1, and Iba1 staining were not prominently increased, although small numbers of reactive microglia were seen within areas of neuronal death. Increased blood-brain barrier permeability (as measured by IgG staining) was seen at 24 h and primarily affected the contralateral cortex. Axonal injury was the most prominent feature during the initial 2 weeks following blast exposure, although degeneration of other neuronal processes was also present. Strikingly, silver staining revealed otherwise undetected abnormalities, and therefore represents a recommended outcome measure in future studies of blast TBI.


Assuntos
Axônios/patologia , Traumatismos por Explosões/patologia , Lesão Axonal Difusa/patologia , Animais , Axônios/metabolismo , Traumatismos por Explosões/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesão Axonal Difusa/etiologia , Lesão Axonal Difusa/fisiopatologia , Modelos Animais de Doenças , Masculino , Roupa de Proteção , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...