Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 350: 123934, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588971

RESUMO

In the framework of a safe-by-design approach, we previously assessed the eco-safety of nanostructured cellulose sponge (CNS) leachate on sea urchin reproduction. It impaired gamete quality, gamete fertilization competence, and embryo development possibly due to the leaching of chemical additives used during the CNS synthesis process. To extend this observation and identify the component(s) that contribute to CNS ecotoxicity, in the present study, we individually screened the cytotoxic effects on sea urchin Arbacia lixula and Paracentrotus lividus gametes and embryos of the three main constituents of CNS, namely cellulose nanofibers, citric acid, and branched polyethylenimine. The study aimed to minimize any potential safety risk of these components and to obtain an eco-safe CNS. Among the three CNS constituents, branched polyethylenimine resulted in the most toxic agent. Indeed, it affected the physiology and fertilization competence of male and female gametes as well as embryo development in both sea urchin species. These results are consistent with those previously reported for CNS leachate. Moreover, the characterisation of CNS leachate confirmed the presence of detectable branched polyethylenimine in the conditioned seawater even though in a very limited amount. Altogether, these data indicate that the presence of branched polyethylenimine is a cause-effect associated with a significant risk in CNS formulations due to its leaching upon contact with seawater. Nevertheless, the suggested safety protocol consisting of consecutive leaching treatments and conditioning of CNS in seawater can successfully ameliorate the CNS ecotoxicity while maintaining the efficacy of its sorbent properties supporting potential environmental applications.

2.
J Med Chem ; 67(4): 2369-2378, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38335279

RESUMO

There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (∼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Diferenciação Celular , Revelação , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia
3.
ACS Appl Nano Mater ; 7(2): 2401-2413, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38298253

RESUMO

Nanocellulose constitutes a sustainable and biobased solution both as an efficient sorbent material for water treatment and as support for other inorganic nanomaterials with sorbent properties. Herein, we report the synthesis of a nanocomposite by deposition of in situ-generated silver nanoparticles (AgNPs) onto TEMPO-oxidized cellulose nanofibers (TOCNFs). Following an in-depth analytical investigation, we unveil for the first time the key role of AgNPs in enhancing the adsorption efficiency of TOCNF toward Cd2+ ions, chosen as model heavy metal contaminants. The obtained nanocomposite shows a value of Cd2+ sorption capacity at equilibrium from 150 mg L-1 ion aqueous solutions of ∼116 mg g-1 against the value of 78 mg g-1 measured for TOCNF alone. A combination of field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses suggests that Cd2+ ions are mainly adsorbed in the neighborhood of AgNPs. However, XPS characterization allows us to conclude that the role of AgNPs relies on increasing the exposure of carboxylic groups with respect to the original TOCNF, suggesting that these groups are still responsible for absorption. In fact, X-ray absorption spectroscopy (XAS) analysis of the Cd-K edge excludes a direct interaction between Ag0 and Cd2+, supporting the XPS results and confirming the coordination of the latter with carboxyl groups.

4.
Pathogens ; 12(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133292

RESUMO

As part of the non-clinical safety package characterizing bamlanivimab (SARS-CoV-2 neutralizing monoclonal antibody), the risk profile for antibody-dependent enhancement of infection (ADE) was evaluated in vitro and in an African green monkey (AGM) model of COVID-19. In vitro ADE assays in primary human macrophage, Raji, or THP-1 cells were used to evaluate enhancement of viral infection. Bamlanivimab binding to C1q, FcR, and cell-based effector activity was also assessed. In AGMs, the impact of bamlanivimab pretreatment on viral loads and clinical and histological pathology was assessed to evaluate enhanced SARS-CoV-2 replication or pathology. Bamlanivimab did not increase viral replication in vitro, despite a demonstrated effector function. In vivo, no significant differences were found among the AGM groups for weight, temperature, or food intake. Treatment with bamlanivimab reduced viral loads in nasal and oral swabs and BAL fluid relative to control groups. Viral antigen was not detected in lung tissue from animals treated with the highest dose of bamlanivimab. Bamlanivimab did not induce ADE of SARS-CoV-2 infection in vitro or in an AGM model of infection at any dose evaluated. The findings suggest that high-affinity monoclonal antibodies pose a low risk of mediating ADE in patients and support their safety profile as a treatment of COVID-19 disease.

5.
Lung Cancer ; 184: 107342, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573705

RESUMO

BACKGROUND: Radical resection of isolated lung metastases (LM) from colorectal cancer (CRC) is debated. Like Fong's criteria in liver metastases, our study was meant to assign a clinical prognostic score in patients with LM from CRC, aiming for better surgery selection. METHODS: We retrospectively analyzed data from 260 CRC patients who underwent curative LM resection from December 2002 to January 2022, verifying the impact of different clinicopathological features on the overall survival (OS). RESULTS: At the univariate analysis: higher baseline CEA levels (p = 0.0001), disease-free survival less than or equal to 12 months (m) (p = 0.0043), LM size larger than 2 cm (p = 0.0187), multiple resectable nodules (p = 0.0083), and positive nodal status of the primary tumor (p = 0.0011) were associated with worse prognosis. In a Cox regression model, these characteristics retained their independent role for OS (p < 0.0001) and were chosen as criteria to be assigned one point each for clinical risk score. The 5-year survival rate in patients with 0 points was 88%, while no patients with a 5-point score survived at 2 years. Based on the 0-1 vs. 2-5 score range, we obtained a significant difference in median OS: not reached vs. 40.8 months (95 %CI 36 to 87.5), respectively (p < 0.0001) stratifying patients into good and poor prognosis. The prognostic role of the score was also confirmed in terms of median RFS: not reached in 0-1 scored patients vs. 30.5 months (95 %CI 19.4 to 42) in patients with 2-5 scores (p = 0.0006). CONCLUSIONS: When LM from CRC is resectable, the Meta-Lung Score provides valuable prognostic information. Indeed, while upfront surgery should be considered in patients with scores of 0 to 1, it should be cautiously suggested in patients with scores of 2 to 5, for whom a prognosis comparison between preventive surgery and other treatments should be investigated in prospective randomized clinical trials.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Pulmonares , Metastasectomia , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/patologia , Estudos Prospectivos , Prognóstico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Pulmão/patologia , Taxa de Sobrevida
6.
FEBS Lett ; 597(15): 1921-1927, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487655

RESUMO

The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster session, showcasing the latest discoveries and future challenges related to the DepMap. The symposium aimed to facilitate interactions among participants across Europe, encourage idea exchange with leading experts, and present their work and future projects. Importantly, it sparked discussions on future endeavours, such as screening more complex cancer models and accounting for tumour evolution.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Europa (Continente)
7.
Environ Pollut ; 334: 122169, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437755

RESUMO

Nanostructured cellulose sponges (CNS) have been developed as eco-friendly and sustainable engineered materials for marine environmental remediation. Despite their functionality, sensitivity, efficiency and specificity have been proved, CNS application is still limited since their environmental safety (eco-safety) has not been completely assessed. In this study, CNS were allowed to leach in natural seawater simulating the remediation process condition and the eco-safety of CNS leachate on sea urchin reproduction has been assessed by carrying out a multi-response integrated approach, combining standardized ecotoxicity tests, innovative bioassays and gamete quality assessment. Overall, the ecotoxicity data indicate that CNS leachate affects gamete quality, gamete fertilisation competence, and embryo development probably associated with the release of chemical additives used during the synthesis process. However, in the framework of the eco-design approach, consecutive leaching treatments and conditioning of CNS in seawater open the route for a new safety protocol successfully solving the ecotoxicity while maintaining CNS sorbent properties. A safe environmental application of the resulting conditioned CNS for seawater pollution remediation is envisaged.


Assuntos
Recuperação e Remediação Ambiental , Ouriços-do-Mar , Animais , Reprodução , Células Germinativas , Água do Mar/química
8.
J Org Chem ; 88(13): 9105-9122, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276453

RESUMO

Studies suggest that the 1'ß-CN moiety in remdesivir sterically clashes with the Ser861 residue of the RNA-dependent-RNA polymerase (RdRp), causing a delayed chain termination in the RNA replication process. Replacing C1'ß-CN with 5-membered heterocycles such as tetrazoles, oxadiazoles, and triazoles can augment the inhibitory activity and pharmacokinetic profile of C-nucleotides. Synthesis of tetrazole-, triazole-, and oxadiazole-integrated C1' analogues of remdesivir was attempted using general synthetic routes. The final compounds 26, 28, and 29 did not inhibit viral replication; however, the synthetic intermediates, i.e., 27 and 50, exhibited an IC90 = 14.1 µM each. The trifluoromethyl-substituted 1,2,4-oxadiazole 59 showed an IC90 of 33.5 µM. This work adds to the growing evidence of the beneficial medicinal impact of C1,1'-disubstituted C-nucleotides.


Assuntos
Alanina , Nucleotídeos , Monofosfato de Adenosina , Oxidiazóis/farmacologia , Oxidiazóis/química
9.
Dev Psychopathol ; 35(1): 35-43, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210369

RESUMO

The COVID-19 pandemic is a global traumatic experience for citizens, especially during sensitive time windows of heightened plasticity such as pregnancy and neonatal life. Pandemic-related stress experienced by mothers during pregnancy may act as an early risk factor for infants' regulatory capacity development by altering maternal psychosocial well-being (e.g., increased anxiety, reduced social support) and caregiving environment (e.g., greater parenting stress, impaired mother-infant bonding). The aim of the present longitudinal study was to assess the consequences of pandemic-related prenatal stress on infants' regulatory capacity. A sample of 163 mother-infant dyads was enrolled at eight maternity units in northern Italy. They provided complete data about prenatal stress, perceived social support, postnatal anxiety symptoms, parenting stress, mother-infant bonding, and infants' regulatory capacity at 3 months of age. Women who experienced emotional stress and received partial social support during pregnancy reported higher anxious symptoms. Moreover, maternal postnatal anxiety was indirectly linked to the infants' regulatory capacity at 3 months, mediated by parenting stress and mother-infant bonding. Dedicated preventive interventions should be delivered to mothers and should be focused on protecting the mother-infant dyad from the detrimental effects of pandemic-related stress during the COVID-19 healthcare emergency.


Assuntos
COVID-19 , Relações Mãe-Filho , Recém-Nascido , Feminino , Lactente , Humanos , Gravidez , Estudos Longitudinais , Relações Mãe-Filho/psicologia , Pandemias , COVID-19/epidemiologia , Mães/psicologia
10.
Gels ; 8(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36547314

RESUMO

Cellulose is one of the most ubiquitous and naturally abundant biopolymers found on Earth and is primarily obtained from plants and other biomass sources [...].

11.
Gels ; 8(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36547313

RESUMO

The (eco)design and synthesis of durable heterogeneous catalysts starting from renewable sources derived from biomass waste represents an important step for reducing environmental impacts of organic transformations. Herein, we report the efficient loading of Pd(II) ions on an eco-safe cellulose-based organic support (CNS), obtained by thermal cross-linking between TEMPO-oxidized cellulose nanofibers and branched polyethyleneimine in the presence of citric acid. A 22.7% w/w Pd-loading on CNS was determined by the ICP-OES technique, while the metal distribution on the xerogel was evidenced by SEM-EDS analysis. XPS analysis confirmed the direct chelation of Pd(II) ions by means of the high number of amino groups present in the network, so that further functionalization of the support with specific ligands was not necessary. The new composite turned to be an efficient heterogeneous pre-catalyst for promoting Suzuki-Miyaura coupling reactions between aryl halides and phenyl boronic acid in water, obtaining yields higher than 90% in 30 min, by operating in a microwave reactor at 100 °C and with just 2% w/w of CNS-Pd catalyst with respect to aryl halides (4.5‱ for Pd). At the end of first reaction cycle, Pd(II) ions on the support resulted in being reduced to Pd(0) while maintaining the same catalytic efficiency. In fact, no leaching was observed at the end of reactions, and five cycles of recycling and reusing of CNS-Pd catalyst provided excellent results in terms of yields and selectivity in the desired products.

12.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36388765

RESUMO

Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.

13.
Mol Cell ; 82(15): 2871-2884.e6, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35809572

RESUMO

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Assuntos
HIV-1 , Capsídeo/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , HIV-1/genética , Humanos , Imunidade Inata , Nucleotidiltransferases/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo
14.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35766385

RESUMO

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Depsipeptídeos , Humanos , Pandemias , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
15.
iScience ; 25(5): 104311, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35502318

RESUMO

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal and synthetic dosage lethal (SL/SDL) partners of such altered host genes. Pursuing this disparate antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL/SDL with altered host genes. The predicted SL/SDL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. We further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming noninfected healthy cells.

16.
Materials (Basel) ; 15(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160922

RESUMO

The control of airborne contaminants is of great interest in improving air quality, which has deteriorated more and more in recent years due to strong industrial growth. In the last decades, cellulose has been largely proposed as suitable feedstock to build up eco-friendly materials for a wide range of applications. Herein, the issue regarding the use of cellulose to develop air-filtering systems is addressed. The review covers different cellulose-based solutions, ranging from aerogels and foams to membranes and films, and to composites, considering either particulate filtration (PM10, PM2.5, and PM0.3) or gas and water permeation. The proposed solutions were evaluated on the bases of their quality factor (QF), whose high value (at least of 0.01 Pa-1 referred to commercial HEPA (high-efficiency particulate air) filters) guarantees the best compromise between high filtration efficiency (>99%) and low pressure drop (<1 kPa/g). To face this aspect, we first analyzed the different morphological aspects which can improve the final filtration performance, outlining the importance on using nanofibers not only to increase surface area and to modulate porosity in final solutions, but also as reinforcement of filters made of different materials. Besides the description of technological approaches to improve the mechanical filtration, selected examples show the importance of the chemical interaction, promoted by the introduction of active functional groups on cellulose (nano)fibers backbone, to improve filtration efficiency without reducing filter porosity.

17.
Gels ; 8(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049589

RESUMO

Herein we report the synthesis of cellulose-based metal-loaded nano-sponges and their application as heterogeneous catalysts in organic synthesis. First, the combination in water solution of TEMPO-oxidized cellulose nanofibers (TOCNF) with branched polyethyleneimine (bPEI) and citric acid (CA), and the thermal treatment of the resulting hydrogel, leads to the synthesis of an eco-safe micro- and nano-porous cellulose nano-sponge (CNS). Subsequently, by exploiting the metal chelation characteristics of CNS, already extensively investigated in the field of environmental decontamination, this material is successfully loaded with Cu (II) or Zn (II) metal ions. Efficiency and homogeneity of metal-loading is confirmed by scanning electron microscopy (SEM) analysis with an energy dispersive X-ray spectroscopy (EDS) detector and by inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The resulting materials perform superbly as heterogeneous catalysts for promoting the reaction between aromatic aldehydes and alcohols in the synthesis of aromatic acetals, which play a fundamental role as intermediates in organic synthesis. Optimized conditions allow one to obtain conversions higher than 90% and almost complete selectivity toward acetal products, minimizing, and in some cases eliminating, the formation of carboxylic acid by-products. ICP-OES analysis of the reaction medium allows one to exclude any possible metal-ion release, confirming that catalysis undergoes under heterogeneous conditions. The new metal-loaded CNS can be re-used and recycled five times without losing their catalytic activity.

18.
Materials (Basel) ; 16(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36614411

RESUMO

Interest towards cellulose nanofibers obtained from virgin and waste sources has seen a significant growth, mainly thanks to the increasing sensitivity towards the concept of circular economy and the high levels of paper recycling achieved in recent years. Inspired by the guidelines of the green building industry, this study proposes the production and characterization of TEMPO-oxidized and homogenized cellulose nanofibers (TOHO CNF) from different sources and their use as additives for earth plasters on two different raw earth samples, characterized by geotechnical laboratory tests and mineralogical analysis: a high-plasticity clay (T2) and a medium-compressibility silt (ABS). Original sources, including those derived from waste (recycled cardboard and paper mill sludge), were characterized by determining chemical content (cellulose versus ashes and lignin) and fiber morphology. TOHO CNF derived from the different sources were compared in terms of nanofibers medium diameter, crystallinity degree, thermal decomposition and oxidation degree, that is the content of carboxylic groups per gram of sample. Then, a preliminary analysis of the influence of CNF on earth plasters is examined. Adhesion and capillary absorption tests highlighted the effect of such nanofibers on blends in function of two factors, namely the cellulose original source and the oxidation degree of the fibers. In particular, for both earth samples, T2 and ABS, a significant increase in adhesion strength was observed in the presence of some TOHO CNF additives. As far as capillary sorption tests, while an undesired increase in water adsorption was detected for T2 compared to the control, in the case of ABS, a significant reduction in water content was measured by adding TOHO CNF derived from recycled sources. These results pave the way for further in-depth investigation on the role of TOHO CNF as additives for earth plasters.

19.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709707

RESUMO

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , COVID-19/metabolismo , Redes e Vias Metabólicas/genética , Pandemias , SARS-CoV-2/fisiologia , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Animais , COVID-19/virologia , Células CACO-2 , Chlorocebus aethiops , Conjuntos de Dados como Assunto , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Interações Hospedeiro-Patógeno , Humanos , RNA Interferente Pequeno , Análise de Sequência de RNA , Células Vero , Tratamento Farmacológico da COVID-19
20.
Nanomaterials (Basel) ; 11(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578535

RESUMO

Zinc environmental levels are increasing due to human activities, posing a threat to ecosystems and human health. Therefore, new tools able to remediate Zn contamination in freshwater are highly recommended. Specimens of Dreissena polymorpha (zebra mussel) were exposed for 48 h and 7 days to a wide range of ZnCl2 nominal concentrations (1-10-50-100 mg/L), including those environmentally relevant. Cellulose-based nanosponges (CNS) were also tested to assess their safety and suitability for Zn removal from freshwater. Zebra mussels were exposed to 50 mg/L ZnCl2 alone or incubated with 1.25 g/L of CNS (2 h) and then removed by filtration. The effect of Zn decontamination induced by CNS has been verified by the acute toxicity bioassay Microtox®. DNA primary damage was investigated by the Comet assay; micronuclei frequency and nuclear morphological alterations were assessed by Cytome assay in mussels' haemocytes. The results confirmed the genotoxic effect of ZnCl2 in zebra mussel haemocytes at 48 h and 7-day exposure time. Zinc concentrations were measured in CNS, suggesting that cellulose-based nanosponges were able to remove Zn(II) by reducing its levels in exposure waters and soft tissues of D. polymorpha in agreement with the observed restoration of genetic damage exerted by zinc exposure alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...