Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 23(1): 26, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419031

RESUMO

BACKGROUND: Flash glucose monitoring systems like the FreeStyle Libre (FSL) sensor have gained popularity for monitoring glucose levels in people with diabetes mellitus. This sensor can be paired with an off-label converted real-time continuous glucose monitor (c-rtCGM) plus an ad hoc computer/smartphone interface for remote real-time monitoring of diabetic subjects, allowing for trend analysis and alarm generation. OBJECTIVES: This work evaluates the accuracy and agreement between the FSL sensor and the developed c-rtCGM system. As real-time monitoring is the main feature, the system's connectivity was assessed at 5-min intervals during the trials. METHODS: One week of glucose data were collected from 16 type 1 diabetic rats using the FSL sensor and the c-rtCGM. Baseline blood samples were taken the first day before inducing type 1 diabetes with streptozotocin. Once confirmed diabetic rats, FSL and c-rtCGM, were implanted, and to improve data matching between the two monitoring devices, the c-rtCGM was calibrated to the FSL glucometer readings. A factorial design 2 × 3^3 and a second-order regression was used to find the base values of the linear model transformation of the raw data obtained from the sensor. Accuracy, agreement, and connectivity were assessed by median absolute relative difference (Median ARD), range averaging times, Parkes consensus error grid analysis (EGA), and Bland-Altman analysis with a non-parametric approach. RESULTS: Compared to the FSL sensor, the c-rtCGM had an overall Median ARD of 6.58%, with 93.06% of results in zone A when calibration was not carried out. When calibration frequency changed from every 50 h to 1 h, the overall Median ARD improved from 6.68% to 2.41%, respectively. The connectivity evaluation showed that 95% of data was successfully received every 5 min by the computer interface. CONCLUSIONS AND CLINICAL IMPORTANCE: The results demonstrate the feasibility and reliability of real-time and remote subjects with diabetes monitoring using the developed c-rtCGM system. Performing calibrations relative to the FSL readings increases the accuracy of the data displayed at the interface.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Humanos , Animais , Ratos , Glicemia , Automonitorização da Glicemia/métodos , Reprodutibilidade dos Testes
2.
J Diabetes Sci Technol ; : 19322968221133405, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281579

RESUMO

BACKGROUND: This work evaluates the accuracy and agreement between the FreeStyle Libre sensor (FSL) and an off-label converted real-time continuous glucose monitor (c-rtCGM) device consisting of the MiaoMiao transmitter and the xDrip+ application which can be coupled to the FSL. METHODS: Four weeks of glucose data were collected from 21 participants with type 1 diabetes using the c-rtCGM and FSL: two weeks with a single initial calibration (uncalibrated) and two weeks with a daily calibration (calibrated). Accuracy and agreement evaluation included mean absolute relative difference (MARD), the %20/20 rule, Bland-Altman plots, and the Consensus Error Grid analysis. RESULTS: Values reported by the c-rtCGM system compared with the FSL resulted in an overall MARD of 12.06% and 84.71% of the results falling within Consensus Error Grid Zone A when the device is calibrated. For uncalibrated devices, an overall MARD of 17.49% was obtained. Decreased accuracy was shown in the hypoglycemic range and for rates of change greater than 2 mg/dL/min. The between-device bias also incremented with increasing glucose values. CONCLUSION: Measurements recorded by the c-rtCGM were found to be accurate when compared with FSL data only when performing daily c-rtCGM device calibrations. High drops in accuracy and agreement between devices occurred when the c-rtCGM was not calibrated.

3.
Front Endocrinol (Lausanne) ; 13: 796521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265035

RESUMO

The aim of control strategies for artificial pancreas systems is to calculate the insulin doses required by a subject with type 1 diabetes to regulate blood glucose levels by reducing hyperglycemia and avoiding the induction of hypoglycemia. Several control formulations developed for this end involve a safety constraint given by the insulin on board (IOB) estimation. This constraint has the purpose of reducing hypoglycemic episodes caused by insulin stacking. However, intrapatient variability constantly changes the patient's response to insulin, and thus, an adaptive method is required to restrict the control action according to the current situation of the subject. In this work, the control action computed by an impulsive model predictive controller is modulated with a safety layer to satisfy an adaptive IOB constraint. This constraint is established with two main steps. First, upper and lower IOB bounds are generated with an interval model that accounts for parameter uncertainty, and thus, define the possible system responses. Second, the constraint is selected according to the current value of glycemia, an estimation of the plant-model mismatch, and their corresponding first and second time derivatives to anticipate the changes of both glucose levels and physiological variations. With this strategy satisfactory results were obtained in an adult cohort where random circadian variability and sensor noise were considered. A 92% time in normoglycemia was obtained, representing an increase of time in range compared to previous MPC strategies, and a reduction of time in hypoglycemia to 0% was achieved without dangerously increasing the time in hyperglycemia.


Assuntos
Hiperglicemia , Hipoglicemia , Pâncreas Artificial , Adulto , Algoritmos , Humanos , Hipoglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina
4.
Front Endocrinol (Lausanne) ; 12: 662348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981286

RESUMO

Current technological advances have brought closer to reality the project of a safe, portable, and efficient artificial pancreas for people with type 1 diabetes (T1D). Among the developed control strategies for T1D, model predictive control (MPC) has been emphasized in literature as a promising control for glucose regulation. However, these control strategies are commonly designed in a computer environment, regardless of the limitations of a portable device. In this paper, the performances of six embedded platforms and three open-source optimization solver algorithms are assessed for T1D treatment. Their advantages and limitations are clarified using four MPC formulations of increasing complexity and a hardware-in-the-loop methodology to evaluate glucose control in virtual adult subjects. The performance comparison includes the execution time, the difference concerning the evolution obtained in MATLAB, the processor temperature, energy consumption, time percentage in normoglycemia, and the number of hypo- and hyperglycemic events. Results show that Quadprog is the package that faithfully follows the results obtained with control strategies designed and tuned on a computer with the MATLAB software. In addition, the Raspberry Pi 3 and the Tinker Board S embedded systems present the appropriate characteristics to be implemented as portable devices in the artificial pancreas application according to the criteria set out in this work.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Pâncreas Artificial , Adulto , Algoritmos , Glicemia , Humanos , Hiperglicemia , Hipoglicemia , Insulina , Software , Temperatura
5.
R Soc Open Sci ; 7(7): 200473, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874642

RESUMO

Oncolytic virus therapy aims to eradicate tumours using viruses which only infect and destroy targeted tumour cells. It is urgent to improve understanding and outcomes of this promising cancer treatment because oncolytic virus therapy could provide sensible solutions for many patients with cancer. Recently, mathematical modelling of oncolytic virus therapy was used to study different treatment protocols for treating breast cancer cells with genetically engineered adenoviruses. Indeed, it is currently challenging to elucidate the number, the schedule, and the dosage of viral injections to achieve tumour regression at a desired level and within a desired time frame. Here, we apply control theory to this model to advance the analysis of oncolytic virus therapy. The control analysis of the model suggests that at least three viral injections are required to control and reduce the tumour from any initial size to a therapeutic target. In addition, we present an impulsive control strategy with an integral action and a state feedback control which achieves tumour regression for different schedule of injections. When oncolytic virus therapy is evaluated in silico using this feedback control of the tumour, the controller automatically tunes the dose of viral injections to improve tumour regression and to provide some robustness to uncertainty in biological rates. Feedback control shows the potential to deliver efficient and personalized dose of viral injections to achieve tumour regression better than the ones obtained by former protocols. The control strategy has been evaluated in silico with parameters that represent five nude mice from a previous experimental work. Together, our findings suggest theoretical and practical benefits by applying control theory to oncolytic virus therapy.

6.
ISA Trans ; 101: 91-101, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31982097

RESUMO

In various biomedical applications, drug administration treatment can be modeled as an impulsive control system. Despite the development of different control strategies for impulsive systems, the elimination of the offset generated by a plant-model mismatch has not yet been researched. In biomedical systems, this mismatch is a consequence of physiological changes and can result in inaccurate treatment of patients. Therefore, control techniques that accomplish the objectives by compensating the effect of variations are required. The present paper proposes and substantiates a novel offset-free model predictive control (MPC) strategy for impulsive systems. To that aim, an impulsive disturbance model is introduced, and an observer design is developed that includes new observability criteria for estimating the disturbance and the state. Further, it is demonstrated that the proposed control strategy achieves zero offset tracking from an analysis of the observer and the controller at steady state. Additionally, the controller incorporates a recent MPC formulation to steer the state to an equilibrium set using artificial/intermediary variables to achieve nonzero regulation. Finally, these results are evaluated and illustrated using a dynamical model for type 1 diabetic patients.


Assuntos
Conduta do Tratamento Medicamentoso/organização & administração , Modelos Teóricos , Preparações Farmacêuticas/administração & dosagem , Algoritmos , Simulação por Computador , Diabetes Mellitus Tipo 1/tratamento farmacológico , Composição de Medicamentos , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico
7.
IET Syst Biol ; 14(1): 16-23, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931477

RESUMO

Driving blood glycaemia from hyperglycaemia to euglycaemia as fast as possible while avoiding hypoglycaemia is a major problem for decades for type-1 diabetes and is solved in this study. A control algorithm is designed that guaranties hypoglycaemia avoidance for the first time both from the theory of positive systems point of view and from the most pragmatic clinical practice. The solution consists of a state feedback control law that computes the required hyperglycaemia correction bolus in real-time to safely steer glycaemia to the target. A rigorous proof is given that shows that the control-law respects the positivity of the control and of the glucose concentration error: as a result, no hypoglycaemic episode occurs. The so-called hypo-free strategy control is tested with all the UVA/Padova T1DM simulator patients (i.e. ten adults, ten adolescents, and ten children) during a fasting-night scenario and in a hybrid closed-loop scenario including three meals. The theoretical results are assessed by the simulations on a large cohort of virtual patients and encourage clinical trials.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemia/prevenção & controle , Pâncreas Artificial , Adolescente , Adulto , Algoritmos , Glicemia/análise , Criança , Simulação por Computador , Jejum/fisiologia , Humanos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/uso terapêutico
8.
Biores Open Access ; 3(5): 233-41, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25371860

RESUMO

This review shows the potential ground-breaking impact that mathematical tools may have in the analysis and the understanding of the HIV dynamics. In the first part, early diagnosis of immunological failure is inferred from the estimation of certain parameters of a mathematical model of the HIV infection dynamics. This method is supported by clinical research results from an original clinical trial: data just after 1 month following therapy initiation are used to carry out the model identification. The diagnosis is shown to be consistent with results from monitoring of the patients after 6 months. In the second part of this review, prospective research results are given for the design of individual anti-HIV treatments optimizing the recovery of the immune system and minimizing side effects. In this respect, two methods are discussed. The first one combines HIV population dynamics with pharmacokinetics and pharmacodynamics models to generate drug treatments using impulsive control systems. The second one is based on optimal control theory and uses a recently published differential equation to model the side effects produced by highly active antiretroviral therapy therapies. The main advantage of these revisited methods is that the drug treatment is computed directly in amounts of drugs, which is easier to interpret by physicians and patients.

10.
IEEE Trans Biomed Eng ; 57(9): 2079-89, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20501345

RESUMO

A control-theoretic approach to the problem of designing "low-side-effects" therapies for HIV patients based on highly active drugs is substantiated here. The evolution of side effects during treatment is modeled by an extra differential equation coupled to the dynamics of virions, healthy T-cells, and infected ones. The new equation reflects the dependence of collateral damages on the amount of each dose administered to the patient and on the evolution of the viral load detected by periodical blood analysis. The cost objective accounts for recommended bounds on healthy cells and virions, and also penalizes the appearance of collateral morbidities caused by the medication. The optimization problem is solved by a hybrid dynamic programming scheme that adhere to discrete-time observation and control actions, but by maintaining the continuous-time setup for predicting states and side effects. The resulting optimal strategies employ less drugs than those prescribed by previous optimization studies, but maintaining high doses at the beginning and the end of each period of six months. If an inverse discount rate is applied to favor early actions, and under a mild penalization of the final viral load, then the optimal doses are found to be high at the beginning and decrease afterward, thus causing an apparent stabilization of the main variables. But in this case, the final viral load turns higher than acceptable.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Infecções por HIV/tratamento farmacológico , HIV-1 , Modelos Biológicos , Algoritmos , Fármacos Anti-HIV/administração & dosagem , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Terapia Antirretroviral de Alta Atividade/métodos , Linfócitos T CD4-Positivos , Simulação por Computador , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Dinâmica não Linear , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...