Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570920

RESUMO

Fungal plant diseases are a major threat to food security worldwide. Current efforts to identify and list loci involved in different biological processes are more complicated than originally thought, even when complete genome assemblies are available. Despite numerous experimental and computational efforts to characterize gene functions in plants, about ~40% of protein-coding genes in the model plant Arabidopsis thaliana L. are still not categorized in the Gene Ontology (GO) Biological Process (BP) annotation. In non-model organisms, such as sunflower (Helianthus annuus L.), the number of BP term annotations is far fewer, ~22%. In the current study, we performed gene co-expression network analysis using eight terabytes of public transcriptome datasets and expression-based functional prediction to categorize and identify loci involved in the response to fungal pathogens. We were able to construct a reference gene network of healthy green tissue (GreenGCN) and a gene network of healthy and stressed root tissues (RootGCN). Both networks achieved robust, high-quality scores on the metrics of guilt-by-association and selective constraints versus gene connectivity. We were able to identify eight modules enriched in defense functions, of which two out of the three modules in the RootGCN were also conserved in the GreenGCN, suggesting similar defense-related expression patterns. We identified 16 WRKY genes involved in defense related functions and 65 previously uncharacterized loci now linked to defense response. In addition, we identified and classified 122 loci previously identified within QTLs or near candidate loci reported in GWAS studies of disease resistance in sunflower linked to defense response. All in all, we have implemented a valuable strategy to better describe genes within specific biological processes.

2.
Virus Res ; 325: 199035, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586487

RESUMO

INTRODUCTION: Coinfection with two SARS-CoV-2 viruses is still a very understudied phenomenon. Although next generation sequencing methods are very sensitive to detect heterogeneous viral populations in a sample, there is no standardized method for their characterization, so their clinical and epidemiological importance is unknown. MATERIAL AND METHODS: We developed VICOS (Viral COinfection Surveillance), a new bioinformatic algorithm for variant calling, filtering and statistical analysis to identify samples suspected of being mixed SARS-CoV-2 populations from a large dataset in the framework of a community genomic surveillance. VICOS was used to detect SARS-CoV-2 coinfections in a dataset of 1,097 complete genomes collected between March 2020 and August 2021 in Argentina. RESULTS: We detected 23 cases (2%) of SARS-CoV-2 coinfections. Detailed study of VICOS's results together with additional phylogenetic analysis revealed 3 cases of coinfections by two viruses of the same lineage, 2 cases by viruses of different genetic lineages, 13 were compatible with both coinfection and intra-host evolution, and 5 cases were likely a product of laboratory contamination. DISCUSSION: Intra-sample viral diversity provides important information to understand the transmission dynamics of SARS-CoV-2. Advanced bioinformatics tools, such as VICOS, are a necessary resource to help unveil the hidden diversity of SARS-CoV-2.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , Filogenia , Genoma Viral , Biologia Computacional , Sequência Consenso
3.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501341

RESUMO

Wood properties and agronomic traits associated with fast growth and frost tolerance make Eucalyptus nitens a valuable forest alternative. However, the rapid age-related decline in the adventitious root (AR) formation (herein, meaning induction, initiation, and expression stages) limits its propagation. We analyzed transcriptomic profile variation in leaves and stem bases during AR induction of microcuttings to elucidate the molecular mechanisms involved in AR formation. In addition, we quantified expressions of candidate genes associated with recalcitrance. We delimited the ontogenic phases of root formation using histological techniques and Scarecrow and Short-Root expression quantification for RNA sequencing sample collection. We quantified the gene expressions associated with root meristem formation, auxin biosynthesis, perception, signaling, conjugation, and cytokinin signaling in shoots harvested from 2- to 36-month-old plants. After IBA treatment, 702 transcripts changed their expressions. Several were involved in hormone homeostasis and the signaling pathways that determine cell dedifferentiation, leading to root meristem formation. In part, the age-related decline in the rooting capacity is attributable to the increase in the ARR1 gene expression, which negatively affects auxin homeostasis. The analysis of the transcriptomic variation in the leaves and rooting zones provided profuse information: (1) To elucidate the auxin metabolism; (2) to understand the hormonal and signaling processes involved; (3) to collect data associated with their recalcitrance.

4.
BMC Genet ; 21(Suppl 2): 136, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339505

RESUMO

BACKGROUND: Anastrepha fraterculus sp. 1 is considered a quarantine pest in several American countries. Since chemical control applied in an integrated pest management program is the only strategy utilized against this pest, the development of pesticide-free methods, such as the Sterile Insect Technique, is being considered. The search for genes involved in sex-determination and differentiation, and in metabolic pathways associated with communication and mating behaviour, contributes with key information to the development of genetic control strategies. The aims of this work were to perform a comprehensive analysis of A. fraterculus sp. 1 transcriptome and to obtain an initial evaluation of genes associated with main metabolic pathways by the expression analysis of specific transcripts identified in embryos and adults. RESULTS: Sexually mature adults of both sexes and 72 h embryos were considered for transcriptome analysis. The de novo transcriptome assembly was fairly complete (62.9% complete BUSCO orthologs detected) with a total of 86,925 transcripts assembled and 28,756 GO annotated sequences. Paired-comparisons between libraries showed 319 transcripts differently expressed between embryos and females, 1242 between embryos and males, and 464 between sexes. Using this information and genes searches based on published studies from other tephritid species, we evaluated a set of transcripts involved in development, courtship and metabolic pathways. The qPCR analysis evidenced that the early genes serendipity alpha and transformer-2 displayed similar expression levels in the analyzed stages, while heat shock protein 27 is over-expressed in embryos and females in comparison to males. The expression of genes associated with courtship (takeout-like, odorant-binding protein 50a1) differed between males and females, independently of their reproductive status (virgin vs mated individuals). Genes associated with metabolic pathways (maltase 2-like, androgen-induced gene 1) showed differential expression between embryos and adults. Furthermore, 14,262 microsatellite motifs were identified, with 11,208 transcripts containing at least one simple sequence repeat, including 48% of di/trinucleotide motifs. CONCLUSION: Our results significantly expand the available gene space of A. fraterculus sp. 1, contributing with a fairly complete transcript database of embryos and adults. The expression analysis of the selected candidate genes, along with a set of microsatellite markers, provides a valuable resource for further genetic characterization of A. fraterculus sp. 1 and supports the development of specific genetic control strategies.


Assuntos
Comportamento Sexual Animal , Tephritidae/genética , Transcriptoma , Animais , Embrião não Mamífero , Feminino , Masculino , Repetições de Microssatélites , RNA-Seq , Reprodução , Tephritidae/embriologia
5.
Sci Rep ; 10(1): 13347, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770047

RESUMO

Sclerotinia head rot (SHR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating sunflower crop diseases. Despite its worldwide occurrence, the genetic determinants of plant resistance are still largely unknown. Here, we investigated the Sclerotinia-sunflower pathosystem by analysing temporal changes in gene expression in one susceptible and two tolerant inbred lines (IL) inoculated with the pathogen under field conditions. Differential expression analysis showed little overlapping among ILs, suggesting genotype-specific control of cell defense responses possibly related to differences in disease resistance strategies. Functional enrichment assessments yielded a similar pattern. However, all three ILs altered the expression of genes involved in the cellular redox state and cell wall remodeling, in agreement with current knowledge about the initiation of plant immune responses. Remarkably, the over-representation of long non-coding RNAs (lncRNA) was another common feature among ILs. Our findings highlight the diversity of transcriptional responses to SHR within sunflower breeding lines and provide evidence of lncRNAs playing a significant role at early stages of defense.


Assuntos
Ascomicetos/genética , Helianthus/microbiologia , Doenças das Plantas/microbiologia , Cruzamento/métodos , Parede Celular/microbiologia , Resistência à Doença , Expressão Gênica/genética , Genótipo , Oxirredução , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética
6.
Genes (Basel) ; 11(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155892

RESUMO

Sunflower germplasm collections are valuable resources for broadening the genetic base of commercial hybrids and ameliorate the risk of climate events. Nowadays, the most studied worldwide sunflower pre-breeding collections belong to INTA (Argentina), INRA (France), and USDA-UBC (United States of America-Canada). In this work, we assess the amount and distribution of genetic diversity (GD) available within and between these collections to estimate the distribution pattern of global diversity. A mixed genotyping strategy was implemented, by combining proprietary genotyping-by-sequencing data with public whole-genome-sequencing data, to generate an integrative 11,834-common single nucleotide polymorphism matrix including the three breeding collections. In general, the GD estimates obtained were moderate. An analysis of molecular variance provided evidence of population structure between breeding collections. However, the optimal number of subpopulations, studied via discriminant analysis of principal components (K = 12), the bayesian STRUCTURE algorithm (K = 6) and distance-based methods (K = 9) remains unclear, since no single unifying characteristic is apparent for any of the inferred groups. Different overall patterns of linkage disequilibrium (LD) were observed across chromosomes, with Chr10, Chr17, Chr5, and Chr2 showing the highest LD. This work represents the largest and most comprehensive inter-breeding collection analysis of genomic diversity for cultivated sunflower conducted to date.


Assuntos
Helianthus/genética , Desequilíbrio de Ligação , Polimorfismo Genético , Banco de Sementes , Cromossomos de Plantas/genética , Melhoramento Vegetal/métodos
7.
Planta ; 251(1): 7, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776669

RESUMO

MAIN CONCLUSION: miRNA targets from Citrus sinensis are predicted and validated using degradome data. They show an up-regulation upon infection with CPsV, with a positive correlation between target expression and symptom severity. Sweet orange (Citrus sinensis) may suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. Infection of sweet orange plants with two isolates of citrus psorosis virus (CPsV), expressing different symptomatologies, alters the accumulation of a set of endogenous microRNAs (miRNAs). Here, we predicted ten putative targets from four down-regulated miRNAs: three belonging to the CCAAT-binding transcription factor family (CBFAs); an Ethylene-responsive transcription factor (RAP2-7); an Integrase-type DNA-binding superfamily protein (AP2B); Transport inhibitor response 1 (TIR1); GRR1-like protein 1-related (GRR1); Argonaute 2-related (AGO2), Argonaute 7 (AGO7), and a long non-coding RNA (ncRNA). We validated six of them through analysis of leaf degradome data. Expressions of the validated targets increase in infected samples compared to healthy tissue, showing a more striking up-regulation those samples with higher symptom severity. This study contributes to the understanding of the miRNA-mediated regulation of important transcripts in Citrus sinensis through target validation and shed light in the manner a virus can alter host regulatory mechanisms leading to symptom expression.


Assuntos
Citrus sinensis/metabolismo , Citrus sinensis/virologia , MicroRNAs/metabolismo , Vírus de Plantas/patogenicidade , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
8.
Data Brief ; 27: 104693, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720340

RESUMO

Cercospora kikuchii (Tak. Matsumoto & Tomoy.) M.W. Gardner 1927 is an ascomycete fungal pathogen that causes Cercospora leaf blight and purple seed stain on soybean. Here, we report the first draft genome sequence and assembly of this pathogen. The C. kikuchii strain ARG_18_001 was isolated from soybean purple seed collected from San Pedro, Buenos Aires, Argentina, during the 2018 harvest. The genome was sequenced using a 2 × 150 bp paired-end method by Illumina NovaSeq 6000. The C. kikuchii protein-coding genes were predicted using FunGAP (Fungal Genome Annotation Pipeline). The draft genome assembly was 33.1 Mb in size with a GC-content of 53%. The gene prediction resulted in 14,856 gene models/14,721 protein coding genes. Genomic data of C. kikuchii presented here will be a useful resource for future studies of this pathosystem. The data can be accessed at GenBank under the accession number VTAY00000000 https://www.ncbi.nlm.nih.gov/nuccore/VTAY00000000.

9.
BMC Plant Biol ; 19(1): 446, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651254

RESUMO

BACKGROUND: Leaf senescence is a complex process, controlled by multiple genetic and environmental variables. In sunflower, leaf senescence is triggered abruptly following anthesis thereby limiting the capacity of plants to keep their green leaf area during grain filling, which subsequently has a strong impact on crop yield. Recently, we performed a selection of contrasting sunflower inbred lines for the progress of leaf senescence through a physiological, cytological and molecular approach. Here we present a large scale transcriptomic analysis using RNA-seq and its integration with metabolic profiles for two contrasting sunflower inbred lines, R453 and B481-6 (early and delayed senescence respectively), with the aim of identifying metabolic pathways associated to leaf senescence. RESULTS: Gene expression profiles revealed a higher number of differentially expressed genes, as well as, higher expression levels in R453, providing evidence for early activation of the senescence program in this line. Metabolic pathways associated with sugars and nutrient recycling were differentially regulated between the lines. Additionally, we identified transcription factors acting as hubs in the co-expression networks; some previously reported as senescence-associated genes in model species but many are novel candidate genes. CONCLUSIONS: Understanding the onset and the progress of the senescence process in crops and the identification of these new candidate genes will likely prove highly useful for different management strategies to mitigate the impact of senescence on crop yield. Functional characterization of candidate genes will help to develop molecular tools for biotechnological applications in breeding crop yield.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Helianthus/genética , Biologia de Sistemas , Transcriptoma , Genômica , Helianthus/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Especificidade da Espécie , Fatores de Tempo
10.
Planta ; 250(2): 445-462, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31055624

RESUMO

MAIN CONCLUSION: Abscisic acid is involved in the drought response of Ilex paraguariensis. Acclimation includes root growth stimulation, stomatal closure, osmotic adjustment, photoprotection, and regulation of nonstructural carbohydrates and amino acid metabolisms. Ilex paraguariensis (yerba mate) is cultivated in the subtropical region of South America, where the occurrence of drought episodes limit yield. To explore the mechanisms that allow I. paraguariensis to overcome dehydration, we investigated (1) how gene expression varied between water-stressed and non-stressed plants and (2) in what way the modulation of gene expression was linked to physiological status and metabolite composition. A total of 4920 differentially expressed transcripts were obtained through RNA-Seq after water deprivation. Drought induced the expression of several transcripts involved in the ABA-signalling pathway. Stomatal closure and leaf osmotic adjustments were promoted to minimize water loss, and these responses were accompanied by a high transcriptional remodeling of stress perception, signalling and transcriptional regulation, the photoprotective and antioxidant systems, and other stress-responsive genes. Simultaneously, significant changes in metabolite contents were detected. Glutamine, phenylalanine, isomaltose, fucose, and malate levels were shown to be positively correlated with dehydration. Principal component analysis showed differences in the metabolic profiles of control and stressed leaves. These results provide a comprehensive overview of how I. paraguariensis responds to dehydration at transcriptional and metabolomic levels and provide further characterization of the molecular mechanisms associated with drought response in perennial subtropical species.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Ilex paraguariensis/fisiologia , Metaboloma , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Aclimatação , Desidratação , Secas , Perfilação da Expressão Gênica , Ilex paraguariensis/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico
11.
PLoS One ; 14(3): e0214165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909287

RESUMO

Snakin-1 is a member of the Solanum tuberosum Snakin/GASA family. We previously demonstrated that Snakin-1 is involved in plant defense to pathogens as well as in plant growth and development, but its mechanism of action has not been completely elucidated yet. Here, we showed that leaves of Snakin-1 silenced potato transgenic plants exhibited increased levels of reactive oxygen species and significantly reduced content of ascorbic acid. Furthermore, Snakin-1 silencing enhanced salicylic acid content in accordance with an increased expression of SA-inducible PRs genes. Interestingly, gibberellic acid levels were also enhanced and transcriptome analysis revealed that a large number of genes related to sterol biosynthesis were downregulated in these silenced lines. Moreover, we demonstrated that Snakin-1 directly interacts with StDIM/DWF1, an enzyme involved in plant sterols biosynthesis. Additionally, the analysis of the expression pattern of PStSN1::GUS in potato showed that Snakin-1 is present mainly in young tissues associated with active growth and cell division zones. Our comprehensive analysis of Snakin-1 silenced lines demonstrated for the first time in potato that Snakin-1 plays a role in redox balance and participates in a complex crosstalk among different hormones.


Assuntos
Reguladores de Crescimento de Plantas , Folhas de Planta , Proteínas de Plantas , Plantas Geneticamente Modificadas , Solanum tuberosum , Fitosteróis/biossíntese , Fitosteróis/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
12.
PLoS One ; 13(12): e0203768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532149

RESUMO

The endangered Cedrela balansae C.DC. (Meliaceae) is a high-value timber species with great potential for forest plantations that inhabits the tropical forests in Northwestern Argentina.Research on this species is scarce because of the limited genetic and genomic information available. Here, we explored the transcriptome of C. balansae using 454 GS FLX Titanium next-generation sequencing (NGS) technology. Following de novo assembling, we identified 27,111 non-redundant unigenes longer than 200 bp, and considered these transcripts for further downstream analysis. The functional annotation was performed searching the 27,111 unigenes against the NR-Protein and the Interproscan databases. This analysis revealed 26,977 genes with homology in at least one of the Database analyzed. Furthermore, 7,774 unigenes in 142 different active biological pathways in C. balansae were identified with the KEGG database. Moreover, after in silico analyses, we detected 2,663 simple sequence repeats (SSRs) markers. A subset of 70 SSRs related to important "stress tolerance" traits based on functional annotation evidence, were selected for wet PCR-validation in C. balansae and other Cedrela species inhabiting in northwest and northeast of Argentina (C. fissilis, C. saltensis and C. angustifolia). Successful transferability was between 77% and 93% and thanks to this study, 32 polymorphic functional SSRs for all analyzed Cedrela species are now available. The gene catalog and molecular markers obtained here represent a starting point for further research, which will assist genetic breeding programs in the Cedrela genus and will contribute to identifying key populations for its preservation.


Assuntos
Cedrela/genética , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/fisiologia , Argentina , Cedrela/crescimento & desenvolvimento , Marcadores Genéticos
13.
Microb Genom ; 4(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216146

RESUMO

Butyrivibrio fibrisolvens forms part of the gastrointestinal microbiome of ruminants and other mammals, including humans. Indeed, it is one of the most common bacteria found in the rumen and plays an important role in ruminal fermentation of polysaccharides, yet, to date, there is no closed reference genome published for this species in any ruminant animal. We successfully assembled the nearly complete genome sequence of B. fibrisolvens strain INBov1 isolated from cow rumen using Illumina paired-end reads, 454 Roche single-end and mate pair sequencing technology. Additionally, we constructed an optical restriction map of this strain to aid in scaffold ordering and positioning, and completed the first genomic structure of this species. Moreover, we identified and assembled the first chromid of this species (pINBov266). The INBov1 genome encodes a large set of genes involved in the cellulolytic process but lacks key genes. This seems to indicate that B. fibrisolvens plays an important role in ruminal cellulolytic processes, but does not have autonomous cellulolytic capacity. When searching for genes involved in the biohydrogenation of unsaturated fatty acids, no linoleate isomerase gene was found in this strain. INBov1 does encode oleate hydratase genes known to participate in the hydrogenation of oleic acids. Furthermore, INBov1 contains an enolase gene, which has been recently determined to participate in the synthesis of conjugated linoleic acids. This work confirms the presence of a novel chromid in B. fibrisolvens and provides a new potential reference genome sequence for this species, providing new insight into its role in biohydrogenation and carbohydrate degradation.


Assuntos
Butyrivibrio fibrisolvens/crescimento & desenvolvimento , Genoma Bacteriano , Genômica , Análise de Sequência de DNA , Animais , Butyrivibrio fibrisolvens/isolamento & purificação , Bovinos , Humanos , Leite/microbiologia , Rúmen/microbiologia
14.
Plant Mol Biol ; 94(4-5): 549-564, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28639116

RESUMO

KEY MESSAGE: By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Helianthus/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Água/metabolismo , Clorofila/metabolismo , Helianthus/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise Serial de Proteínas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
15.
J Exp Bot ; 68(11): 2821-2832, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28541511

RESUMO

The plant hormone ethylene affects many biological processes during plant growth and development. Ethylene is perceived by ethylene receptors at the endoplasmic reticulum (ER) membrane. The ETR1 ethylene receptor is positively regulated by the transmembrane protein RTE1, which localizes to the ER and Golgi apparatus. The RTE1 gene family is conserved in animals, plants, and lower eukaryotes. In Arabidopsis, RTE1-HOMOLOG (RTH) is the only homolog of the Arabidopsis RTE1 gene family. The regulatory function of the Arabidopsis RTH in ethylene signaling and plant growth is largely unknown. The present study shows Arabidopsis RTH gene expression patterns, protein co-localization with the ER and Golgi apparatus, and the altered ethylene response phenotype when RTH is knocked out or overexpressed in Arabidopsis. Compared with rte1 mutants, rth mutants exhibit less sensitivity to exogenous ethylene, while RTH overexpression confers ethylene hypersensitivity. Genetic analyses indicate that Arabidopsis RTH might not directly regulate the ethylene receptors. RTH can physically interact with RTE1, and evidence supports that RTH might act via RTE1 in regulating ethylene responses and signaling. The present study advances our understanding of the regulatory function of the Arabidopsis RTE1 gene family members in ethylene signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Genes de Plantas , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais
16.
BMC Bioinformatics ; 18(1): 121, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28222698

RESUMO

BACKGROUND: In the last years, applications based on massively parallelized RNA sequencing (RNA-seq) have become valuable approaches for studying non-model species, e.g., without a fully sequenced genome. RNA-seq is a useful tool for detecting novel transcripts and genetic variations and for evaluating differential gene expression by digital measurements. The large and complex datasets resulting from functional genomic experiments represent a challenge in data processing, management, and analysis. This problem is especially significant for small research groups working with non-model species. RESULTS: We developed a web-based application, called ATGC transcriptomics, with a flexible and adaptable interface that allows users to work with new generation sequencing (NGS) transcriptomic analysis results using an ontology-driven database. This new application simplifies data exploration, visualization, and integration for a better comprehension of the results. CONCLUSIONS: ATGC transcriptomics provides access to non-expert computer users and small research groups to a scalable storage option and simple data integration, including database administration and management. The software is freely available under the terms of GNU public license at http://atgcinta.sourceforge.net .


Assuntos
Transcriptoma , Interface Usuário-Computador , Animais , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Análise de Sequência de RNA
17.
BMC Genomics ; 17(1): 793, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729028

RESUMO

BACKGROUND: Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is a solitary parasitoid of Tephritidae (Diptera) fruit flies of economic importance currently being mass-reared in bio-factories and successfully used worldwide. A peculiar biological aspect of Hymenoptera is its haplo-diploid life cycle, where females (diploid) develop from fertilized eggs and males (haploid) from unfertilized eggs. Diploid males were described in many species and recently evidenced in D. longicaudata by mean of inbreeding studies. Sex determination in this parasitoid is based on the Complementary Sex Determination (CSD) system, with alleles from at least one locus involved in early steps of this pathway. Since limited information is available about genetics of this parasitoid species, a deeper analysis on D. longicaudata's genomics is required to provide molecular tools for achieving a more cost effective production under artificial rearing conditions. RESULTS: We report here the first transcriptome analysis of male-larvae, adult females and adult males of D. longicaudata using 454-pyrosequencing. A total of 469766 reads were analyzed and 8483 high-quality isotigs were assembled. After functional annotation, a total of 51686 unigenes were produced, from which, 7021 isotigs and 20227 singletons had at least one BLAST hit against the NCBI non-redundant protein database. A preliminary comparison of adult female and male evidenced that 98 transcripts showed differential expression profiles, with at least a 10-fold difference. Among the functionally annotated transcripts we detected four sequences potentially involved in sex determination and three homologues to two known genes involved in the sex determination cascade. Finally, a total of 4674SimpleSequence Repeats (SSRs) were in silico identified and characterized. CONCLUSION: The information obtained here will significantly contribute to the development of D. longicaudata functional genomics, genetics and population-based genome studies. Thousands of new microsatellite markers were identified as toolkits for population genetics analysis. The transcriptome characterized here is the starting point to elucidate the molecular bases of the sex determination mechanism in this species.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Transcriptoma , Vespas/genética , Animais , Biologia Computacional/métodos , Feminino , Ontologia Genética , Variação Genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Larva , Masculino , Repetições de Microssatélites , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Processos de Determinação Sexual
18.
Genome Announc ; 4(4)2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27563050

RESUMO

Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.1%, and 3,443 predicted protein-coding sequences, 92 of which are glycosyl hydrolases involved in polysaccharide degradation.

19.
Plant Biotechnol J ; 14(2): 719-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26132509

RESUMO

Leaf senescence is a complex process, which has dramatic consequences on crop yield. In sunflower, gap between potential and actual yields reveals the economic impact of senescence. Indeed, sunflower plants are incapable of maintaining their green leaf area over sustained periods. This study characterizes the leaf senescence process in sunflower through a systems biology approach integrating transcriptomic and metabolomic analyses: plants being grown under both glasshouse and field conditions. Our results revealed a correspondence between profile changes detected at the molecular, biochemical and physiological level throughout the progression of leaf senescence measured at different plant developmental stages. Early metabolic changes were detected prior to anthesis and before the onset of the first senescence symptoms, with more pronounced changes observed when physiological and molecular variables were assessed under field conditions. During leaf development, photosynthetic activity and cell growth processes decreased, whereas sucrose, fatty acid, nucleotide and amino acid metabolisms increased. Pathways related to nutrient recycling processes were also up-regulated. Members of the NAC, AP2-EREBP, HB, bZIP and MYB transcription factor families showed high expression levels, and their expression level was highly correlated, suggesting their involvement in sunflower senescence. The results of this study thus contribute to the elucidation of the molecular mechanisms involved in the onset and progression of leaf senescence in sunflower leaves as well as to the identification of candidate genes involved in this process.


Assuntos
Perfilação da Expressão Gênica/métodos , Helianthus/genética , Helianthus/metabolismo , Metabolômica/métodos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Íons , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
20.
Genome Biol ; 16: 102, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25990474

RESUMO

BACKGROUND: Nucleosomes are the building blocks of chromatin where gene regulation takes place. Chromatin landscapes have been profiled for several species, providing insights into the fundamental mechanisms of chromatin-mediated transcriptional regulation of gene expression. However, knowledge is missing for several major and deep-branching eukaryotic groups, such as the Stramenopiles, which include the diatoms. Diatoms are highly diverse and ubiquitous species of phytoplankton that play a key role in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans. RESULTS: Here, we use high resolution mass spectrometry to identify a full repertoire of post-translational modifications on histones of the marine diatom Phaeodactylum tricornutum, including eight novel modifications. We map five histone marks coupled with expression data and show that P. tricornutum displays both unique and broadly conserved chromatin features, reflecting the chimeric nature of its genome. Combinatorial analysis of histone marks and DNA methylation demonstrates the presence of an epigenetic code defining activating or repressive chromatin states. We further profile three specific histone marks under conditions of nitrate depletion and show that the histone code is dynamic and targets specific sets of genes. CONCLUSIONS: This study is the first genome-wide characterization of the histone code from a stramenopile and a marine phytoplankton. The work represents an important initial step for understanding the evolutionary history of chromatin and how epigenetic modifications affect gene expression in response to environmental cues in marine environments.


Assuntos
Diatomáceas/metabolismo , Código das Histonas , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Cromatina/metabolismo , Diatomáceas/genética , Expressão Gênica , Genômica , Espectrometria de Massas , Nitratos/metabolismo , Nucleossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...