Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 174(21): 3696-3712, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28320043

RESUMO

BACKGROUND AND PURPOSE: Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca2+ and Na+ overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na+ current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. EXPERIMENTAL APPROACH: Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg-1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg-1 , daily) for the following 4 weeks. KEY RESULTS: While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na+ /Ca2+ exchanger 1 and Nav 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. CONCLUSIONS AND IMPLICATIONS: Ranolazine, by the increased Na+ influx, induced by doxorubicin, altered cardiac Ca2+ and Na+ handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. LINKED ARTICLES: This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.


Assuntos
Doxorrubicina/toxicidade , Ranolazina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Antibióticos Antineoplásicos/toxicidade , Cálcio/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Feminino , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Sódio/metabolismo , Disfunção Ventricular Esquerda/induzido quimicamente
2.
Artigo em Inglês | MEDLINE | ID: mdl-28224128

RESUMO

BACKGROUND: Inflammation plays an essential role in the development and complications of atherosclerosis plaques, including acute coronary syndromes (ACS). Indeed, previous reports have shown that within the coronary circulation of ACS patients, several soluble mediators are released. Moreover, it has been demonstrated that endothelial dysfunction might play an important role in atherosclerosis as well as ACS pathophysiology. However, the mechanisms by which these soluble mediators might affect endothelial functions are still largely unknown. We have evaluated whether soluble mediators contained in serum from coronary circulation of ACS patients might promote changes of gene profile in human coronary endothelial cells (HCAECs). METHODS: HCAECs were stimulated in vitro for 12 h with serum obtained from the coronary sinus (CS) and the aorta (Ao) of ACS patients; stable angina (SA) patients served as controls. Gene expression profiles of stimulated cells were evaluated by microarray and real-time PCR. RESULTS: HCAECs stimulated with serum from CS of ACS patients showed a significant change (upregulation and downregulation) in gene expression profile as compared with cells stimulated with serum from CS of SA patients. Moreover, ad hoc sub analysis indicated the upregulation of Th-17/IL-17 pathway-related genes. CONCLUSION: This study demonstrates that, in ACS patients, the chemical mediators released in the coronary circulation might be able to perturb coronary endothelial cells (ECs) modifying their gene profile. These modified ECs, through downregulation of protective gene and, mainly, through upregulation of gene able to modulate the Th-17/IL-17 pathway, might play a key role in progression of coronary atherosclerosis and in developing future acute events.

3.
Br J Pharmacol ; 174(22): 4070-4086, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27922176

RESUMO

BACKGROUND AND PURPOSE: Heart failure with preserved ejection fraction (HFpEF) is a systemic syndrome driven by co-morbidities, and its pathophysiology is poorly understood. Several studies suggesting that dipeptidyl peptidase 4 (DPP4) might be involved in the pathophysiology of heart failure have prompted experimental and clinical investigations of DPP4 inhibitors in the cardiovascular system. Here we have investigated whether the DPP4 inhibitor sitagliptin affected the progression of HFpEF independently of its effects on glycaemia. EXPERIMENTAL APPROACH: Seven-week-old Dahl salt-sensitive rats were fed a high-salt diet for 5 weeks to induce hypertension. Then the rats continued with the high-salt diet and were treated with either sitagliptin (10 mg·kg-1 ) or vehicle for the following 8 weeks. Blood pressure and cardiac function were measured in vivo. Histochemical and molecular biology analyses of myocardium were used to assay cytokines, fibrotic markers, DPP4 and glucagon-like peptide-1 (GLP-1)/GLP-1 receptor. KEY RESULTS: Treatment with sitagliptin attenuated diastolic dysfunction, reduced mortality and reduced cardiac DPP4 activity, along with increased circulating GLP-1 and myocardial expression of GLP-1 receptors. Myocardial levels of pro-inflammatory cytokines (TNF-α, IL-6 and CCL2) were reduced. Sitagliptin treatment decreased the levels of endothelial NOS monomer, responsible for generation of ROS, while the amount of NO-producing dimeric form increased. Markers of oxidative and nitrosative stress were decreased. Moreover, increased collagen deposition and activation of pro-fibrotic signalling, inducing elevated myocardial stiffness, were attenuated by sitagliptin treatment. CONCLUSIONS AND IMPLICATIONS: Sitagliptin positively modulated active relaxation and passive diastolic compliance by decreasing inflammation-related endothelial dysfunction and fibrosis, associated with HFpEF. LINKED ARTICLES: This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Fosfato de Sitagliptina/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Diástole/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fibrose , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Miocárdio/patologia , Óxido Nítrico/metabolismo , Ratos Endogâmicos Dahl , Fosfato de Sitagliptina/farmacologia , Volume Sistólico
4.
Int J Cardiol ; 217: 69-79, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179211

RESUMO

BACKGROUND: To investigate the effects of chronic administration of ranolazine (RAN) on experimental model of heart failure with preserved ejection fraction. METHODS: Seven-weeks old Dahl salt-sensitive rats were fed a high salt diet for 5weeks to induce hypertension. Afterwards, rats continued with a high salt diet and were administered either with vehicle or RAN (20mg/kg/die, ip) for the following 8weeks. Control rats were maintained on a low salt diet. RESULTS: While systolic parameters were not altered, diastolic parameters were changed in high salt animals. Hemodynamic analysis showed a decreased dP/dt min, increased LVEDP, longer time constant and steeper slope of the end-diastolic pressure-volume relationship. Treatment with RAN attenuated these alterations and determined a reduction in mortality. Additionally, the magnitude of myocardial hypertrophy and activation of PI3K/Akt pathway were reduced. Alteration in diastolic compliance as a consequence of elevated myocardial stiffness was confirmed by an increase of collagen deposition and activation of pro-fibrotic TGF-ß/SMAD3/CTGF signaling. These effects were counteracted by RAN. High salt rats had a decrease in SERCA2 and an increase in Na(+)/Ca(2+) exchanger (NCX). Treatment with RAN reduced NCX expression and determined an increment of SERCA2. Moreover, the levels of nitrotyrosine and oxidized dyhydroethidium were higher in high salt rats. RAN induced a decrement of oxidative stress, supporting the concept that reduction in ROS may mediate beneficial effects. CONCLUSIONS: Our findings support the possibility that diastolic dysfunction can be attenuated by RAN, indicating its ability to affect active relaxation and passive diastolic compliance.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Ranolazina/administração & dosagem , Volume Sistólico/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Esquema de Medicação , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Dahl , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
5.
Int J Cardiol ; 205: 99-110, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26730840

RESUMO

BACKGROUND: Doxorubicin (DOXO) is an effective anti-neoplastic drug but its clinical benefits are hampered by cardiotoxicity. Oxidative stress, apoptosis and myocardial fibrosis mediate the anthracycline cardiomyopathy. ROS trigger TGF-ß pathway that activates cardiac fibroblasts promoting fibrosis. Myocardial stiffness contributes to diastolic dysfunction, less studied aspect of anthracycline cardiomyopathy. Considering the role of SIRT1 in the inhibition of the TGF-ß/SMAD3 pathway, resveratrol (RES), a SIRT1 activator, might improve cardiac function by interfering with the development of cardiac fibrosis in a model of DOXO-induced cardiomyopathy. METHODS: F344 rats received a cumulative dose of 15 mg/kg of DOXO in 2 weeks or DOXO+RES (DOXO and RES, 2.5mg/kg/day, concomitantly for 2 weeks and then RES alone for 1 more week). The effects of RES on cardiac fibroblasts were also tested in vitro. RESULTS: Along with systolic dysfunction, DOXO was also responsible of diastolic abnormalities. Myocardial stiffness correlated with fibroblast activation and collagen deposition. DOXO+RES co-treatment significantly improved ± dP/dt and, more interestingly, ameliorated end-diastolic pressure/volume relationship. Treatment with RES resulted in reduced fibrosis and fibroblast activation and, most importantly, the mortality rate was significantly reduced in DOXO+RES group. Fibroblasts isolated from DOXO+RES-treated rats, in which SIRT1 was upregulated, showed decreased levels of TGF-ß and pSMAD3/SMAD3 when compared to cells isolated from DOXO-exposed hearts. CONCLUSIONS: Our findings reveal a key role of SIRT1 in supporting animal survival and functional parameters of the heart. SIRT1 activation by interfering with fibrogenesis can improve relaxation properties of myocardium and attenuate myocardial remodeling related to chemotherapy.


Assuntos
Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Diástole/efeitos dos fármacos , Doxorrubicina/toxicidade , Sirtuína 1/metabolismo , Estilbenos/uso terapêutico , Animais , Antraciclinas/toxicidade , Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Ratos , Ratos Endogâmicos F344 , Resveratrol , Estilbenos/farmacologia
6.
Cardiooncology ; 2(1): 2, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33530140

RESUMO

The cardiotoxicity of doxorubicin is becoming an interdisciplinary point of interest given a growing population of cancer survivors. The complex and not completely understood pathogenesis of this complication makes difficult to design successful preventive or curative measures. Although cardiomyocyte has been considered a classical cellular target, other cells including various types of undifferentiated cells are involved in myocardial homeostasis. Such perspective may shed light on previously unrecognized aspects of cardiotoxicity and promote new experimental and clinical cardioprotective strategies. In this review, different cellular targets of doxorubicin are discussed with the focus on cardiac progenitor cells, oxidative stress, DNA damage, senescence and apoptosis all of which contribute to their compromised functional properties.

7.
Biochim Biophys Acta ; 1844(3): 497-504, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389235

RESUMO

The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a ß-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a ßßßαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Metais/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dicroísmo Circular , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos
8.
J Inorg Biochem ; 131: 30-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24239910

RESUMO

The zinc coordination sphere in prokaryotic zinc finger domain is extremely versatile and influences the stability and the folding property of the domain. Of a particular interest is the fourth zinc coordinating position, which is frequently occupied by two successive histidines, both able to coordinate the metal ion. To clarify their structural and functional role we report the NMR solution structure and the dynamics behavior of Ros87 H42A, which is a functional mutant of Ros87, the DNA binding domain of the Ros protein containing a prokaryotic Cys2His2 zinc finger domain. The structural analysis indicates that reducing the spacer among the two coordinating histidines from 4 (among His37 and His42) amino acids to 3 (among His37 and His41) increases the helicity of the first α-helix. At the same time, the second helix appears more mobile in the µs-ms timescale and the hydrophobic core is reduced. These data explain the high frequency of three-residue His spacers in the eukaryotic zinc finger domain and their absence in the prokaryotic counterpart. Furthermore, the structural comparison shows that the second coordination position is more sensitive to H42A mutation with respect to the first and the third position, providing the rationale of the high variability of the second and the fourth zinc coordinating position in Ros homologs, which adopt different metal coordination but preserve similar tertiary structures and DNA binding activities. Finally, H/D exchange measurements and NMR thermal unfolding analysis indicate that this mutant likely unfolds via a different mechanism with respect to the wild-type.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Dedos de Zinco , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/metabolismo , Deutério/química , Histidina , Hidrogênio/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Zinco/química , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...