Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585943

RESUMO

Tissue barriers must be rapidly restored after injury to promote regeneration. However, the mechanism behind this process is unclear, particularly in cases where the underlying extracellular matrix is still compromised. Here, we report the discovery of matrimeres as constitutive nanoscale mediators of tissue integrity and function. We define matrimeres as non-vesicular nanoparticles secreted by cells, distinguished by a primary composition comprising at least one matrix protein and DNA molecules serving as scaffolds. Mesenchymal stromal cells assemble matrimeres from fibronectin and DNA within acidic intracellular compartments. Drawing inspiration from this biological process, we have achieved the successful reconstitution of matrimeres without cells. This was accomplished by using purified matrix proteins, including fibronectin and vitronectin, and DNA molecules under optimal acidic pH conditions, guided by the heparin-binding domain and phosphate backbone, respectively. Plasma fibronectin matrimeres circulate in the blood at homeostasis but exhibit a 10-fold decrease during systemic inflammatory injury in vivo . Exogenous matrimeres rapidly restore vascular integrity by actively reannealing endothelial cells post-injury and remain persistent in the host tissue matrix. The scalable production of matrimeres holds promise as a biologically inspired platform for regenerative nanomedicine.

2.
Nat Rev Mater ; 8(6): 390-402, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38463907

RESUMO

The extracellular matrix in microenvironments harbors a variety of signals to control cellular functions and the materiality of tissues. Most efforts to synthetically reconstitute the matrix by biomaterial design have focused on decoupling cell-secreted and polymer-based cues. Cells package molecules into nanoscale lipid membrane-bound extracellular vesicles and secrete them. Thus, extracellular vesicles inherently interact with the meshwork of the extracellular matrix. In this Review, we discuss various aspects of extracellular vesicle-matrix interactions. Cells receive feedback from the extracellular matrix and leverage intracellular processes to control the biogenesis of extracellular vesicles. Once secreted, various biomolecular and biophysical factors determine whether extracellular vesicles are locally incorporated into the matrix or transported out of the matrix to be taken up by other cells or deposited into tissues at a distal location. These insights can be utilized to develop engineered biomaterials where EV release and retention can be precisely controlled in host tissue to elicit various biological and therapeutic outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...