Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Pharm Sci ; 109(10): 3160-3171, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565354

RESUMO

Receptor Interacting Protein 2 (RIP2) kinase inhibitors have been reported for therapeutic opportunities in inflammatory bowel diseases such as Ulcerative Colitis and Crohn's disease. During lead optimization, team identified 4-aminoquinoline series and several compounds from this series were investigated in rat and dog pharmacokinetic studies. While compounds such as GSKA and GSKB demonstrated acceptable pharmacokinetics in rat and dog, further progression of these compounds was halted due to adverse findings in advanced safety studies. Structurally similar analogues incorporating polarity at C-7 position of 4-aminoquinoline resulted in identification of GSKC - GSKF. Interestingly, following oral administration to rat at similar low dose, GSKC - GSKF demonstrated significantly low systemic drug exposure compared to GSKA and GSKB (3-17-fold difference). However, in dog, dose normalized oral systemic exposure for GSKC - GSKF was comparable to GSKA and GSKB (within 2-fold). A series of studies were conducted to understand the disconnect which highlighted that an intrinsic reduction in permeability and high P-glycoprotein (P-gp) efflux ratio for C-7 substituted analogues were driving pharmacokinetic disconnect between rat and dog. Oral absorption was minimally impacted in dog by P-gp mediated efflux compared to rat because the leakier gastrointestinal tract in dog likely overcomes this effect.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Aminoquinolinas/farmacocinética , Administração Oral , Animais , Transporte Biológico , Cães , Permeabilidade , Ratos
3.
J Med Chem ; 62(14): 6482-6494, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31265286

RESUMO

RIP2 kinase has been identified as a key signal transduction partner in the NOD2 pathway contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP2 kinase or its signaling partners on the NOD2 pathway that are suitable for advancement into the clinic have yet to be described. Herein, we report our discovery and profile of the prodrug clinical compound, inhibitor 3, currently in phase 1 clinical studies. Compound 3 potently binds to RIP2 kinase with good kinase specificity and has excellent activity in blocking many proinflammatory cytokine responses in vivo and in human IBD explant samples. The highly favorable physicochemical and ADMET properties of 3 combined with high potency led to a predicted low oral dose in humans.


Assuntos
Benzotiazóis/farmacologia , Fosfatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Animais , Benzotiazóis/química , Benzotiazóis/farmacocinética , Benzotiazóis/uso terapêutico , Colite/tratamento farmacológico , Cães , Descoberta de Drogas , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Fosfatos/química , Fosfatos/farmacocinética , Fosfatos/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/uso terapêutico , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Suínos , Porco Miniatura
4.
ACS Med Chem Lett ; 10(6): 857-862, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223438

RESUMO

RIP1 regulates cell death and inflammation and is believed to play an important role in contributing to a variety of human pathologies, including immune-mediated inflammatory diseases and cancer. While small-molecule inhibitors of RIP1 kinase have been advanced to the clinic for inflammatory diseases and CNS indications, RIP1 inhibitors for oncology indications have yet to be described. Herein we report on the discovery and profile of GSK3145095 (compound 6). Compound 6 potently binds to RIP1 with exquisite kinase specificity and has excellent activity in blocking RIP1 kinase-dependent cellular responses. Highlighting its potential as a novel cancer therapy, the inhibitor was also able to promote a tumor suppressive T cell phenotype in pancreatic adenocarcinoma organ cultures. Compound 6 is currently in phase 1 clinical studies for pancreatic adenocarcinoma and other selected solid tumors.

5.
J Med Chem ; 62(10): 5096-5110, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31013427

RESUMO

RIP1 kinase regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including inflammatory and neurological diseases. Currently, RIP1 kinase inhibitors have advanced into early clinical trials for evaluation in inflammatory diseases such as psoriasis, rheumatoid arthritis, and ulcerative colitis and neurological diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. In this paper, we report on the design of potent and highly selective dihydropyrazole (DHP) RIP1 kinase inhibitors starting from a high-throughput screen and the lead-optimization of this series from a lead with minimal rat oral exposure to the identification of dihydropyrazole 77 with good pharmacokinetic profiles in multiple species. Additionally, we identified a potent murine RIP1 kinase inhibitor 76 as a valuable in vivo tool molecule suitable for evaluating the role of RIP1 kinase in chronic models of disease. DHP 76 showed efficacy in mouse models of both multiple sclerosis and human retinitis pigmentosa.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Pirazóis/síntese química , Pirazóis/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Disponibilidade Biológica , Linhagem Celular , Doença Crônica , Desenho de Fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/farmacocinética , Haplorrinos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Esclerose Múltipla/tratamento farmacológico , Pirazóis/farmacocinética , Ratos , Retinose Pigmentar/tratamento farmacológico , Relação Estrutura-Atividade
6.
ACS Med Chem Lett ; 9(10): 1039-1044, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30344914

RESUMO

RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 µM).

7.
Artigo em Inglês | MEDLINE | ID: mdl-29226625

RESUMO

Therapies that suppress RIPK1 kinase activity are emerging as promising therapeutic agents for the treatment of multiple inflammatory disorders. The ability to directly measure drug binding of a RIPK1 inhibitor to its target is critical for providing insight into pharmacokinetics, pharmacodynamics, safety and clinical efficacy, especially for a first-in-class small-molecule inhibitor where the mechanism has yet to be explored. Here, we report a novel method for measuring drug binding to RIPK1 protein in cells and tissues. This TEAR1 (Target Engagement Assessment for RIPK1) assay is a pair of immunoassays developed on the principle of competition, whereby a first molecule (ie, drug) prevents the binding of a second molecule (ie, antibody) to the target protein. Using the TEAR1 assay, we have validated the direct binding of specific RIPK1 inhibitors in cells, blood and tissues following treatment with benzoxazepinone (BOAz) RIPK1 inhibitors. The TEAR1 assay is a valuable tool for facilitating the clinical development of the lead RIPK1 clinical candidate compound, GSK2982772, as a first-in-class RIPK1 inhibitor for the treatment of inflammatory disease.


Assuntos
Anticorpos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Células HT29 , Humanos , Imunoensaio , Macaca fascicularis , Masculino , Ligação Proteica/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia
8.
J Med Chem ; 60(4): 1247-1261, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28151659

RESUMO

RIP1 regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP1 kinase that are suitable for advancement into the clinic have yet to be described. Herein, we report our lead optimization of a benzoxazepinone hit from a DNA-encoded library and the discovery and profile of clinical candidate GSK2982772 (compound 5), currently in phase 2a clinical studies for psoriasis, rheumatoid arthritis, and ulcerative colitis. Compound 5 potently binds to RIP1 with exquisite kinase specificity and has excellent activity in blocking many TNF-dependent cellular responses. Highlighting its potential as a novel anti-inflammatory agent, the inhibitor was also able to reduce spontaneous production of cytokines from human ulcerative colitis explants. The highly favorable physicochemical and ADMET properties of 5, combined with high potency, led to a predicted low oral dose in humans.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Benzazepinas/química , Benzazepinas/farmacologia , Colite Ulcerativa/imunologia , Citocinas/imunologia , Cães , Haplorrinos , Humanos , Inflamação/imunologia , Camundongos , Simulação de Acoplamento Molecular , Coelhos , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Suínos , Porco Miniatura , Fator de Necrose Tumoral alfa/imunologia
9.
J Med Chem ; 59(10): 4867-80, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27109867

RESUMO

RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis.


Assuntos
Aminoquinolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Sulfonas/farmacologia , Aminoquinolinas/sangue , Aminoquinolinas/química , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Relação Estrutura-Atividade , Sulfonas/sangue , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...