Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 107(8): 1786-1795, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142149

RESUMO

Less than a third of patients with acute myeloid leukemia (AML) are cured by chemotherapy and/or hematopoietic stem cell transplantation, highlighting the need to develop more efficient drugs. The low efficacy of standard treatments is associated with inadequate depletion of CD34+ blasts and leukemic stem cells, the latter a drug-resistant subpopulation of leukemia cells characterized by the CD34+CD38- phenotype. To target these drug-resistant primitive leukemic cells better, we have designed a CD34/CD3 bi-specific T-cell engager (BTE) and characterized its anti-leukemia potential in vitro, ex vivo and in vivo. Our results show that this CD34-specific BTE induces CD34-dependent T-cell activation and subsequent leukemia cell killing in a dose-dependent manner, further corroborated by enhanced T-cell-mediated killing at the singlecell level. Additionally, the BTE triggered efficient T-cell-mediated depletion of CD34+ hematopoietic stem cells from peripheral blood stem cell grafts and CD34+ blasts from AML patients. Using a humanized AML xenograft model, we confirmed that the CD34-specific BTE had in vivo efficacy by depleting CD34+ blasts and leukemic stem cells without side effects. Taken together, these data demonstrate that the CD34-specific BTE has robust antitumor effects, supporting development of a novel treatment modality with the aim of improving outcomes of patients with AML and myelodysplastic syndromes.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Antígenos CD34 , Moléculas de Adesão Celular , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/patologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...