Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376595

RESUMO

Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Gotículas Lipídicas , Montagem de Vírus , Endossomos , Estresse do Retículo Endoplasmático , Galinhas
2.
Biotechnol J ; 18(4): e2200413, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36694286

RESUMO

Human Adipose-Derived Mesenchymal Stem/Stromal Cells (hAD-MSCs) have great potential for tissue regeneration. Since transplanted hAD-MSCs are likely to be placed in a hypoxic environment, culturing the cells under hypoxic conditions might improve their post-transplantation survival and regenerative performance. The combination of hAD-MSCs and PCL-nHA nanofibers synergically improves the contribution of both components for osteoblast differentiation. In this work, we hypothesized that this biomaterial constitutes a hypoxic environment for hAD-MSCs. We studied the cellular re-arrangement and the subcellular ultrastructure by Transmission Electron Microscopy (TEM) of hAD-MSCs grown into PCL-nHA nanofibers, and we compared them with the same cells grown in two-dimensional cultures, over tissue culture-treated plastic, or glass coverslips. Among the most evident changes, PCL-nHA grown cells showed enlarged mitochondria, and accumulation of glycogen granules, consistent with a hypoxic environment. We observed a 3.5 upregulation (p = 0.0379) of Hypoxia Inducible Factor (HIF)-1A gene expression in PCL-nHA grown cells. This work evidences for the first time intra-cellular changes in three-dimensional compared to two-dimensional cultures, which are adaptive responses of the cells to an environment more closely resembling that of the in vivo niche after transplantation, thus PCL-nHA nanofibers are adequate for hAD-MSCs pre-conditioning.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Humanos , Alicerces Teciduais/química , Durapatita/química , Durapatita/metabolismo , Poliésteres/química , Materiais Biocompatíveis/química , Diferenciação Celular , Nanofibras/química , Engenharia Tecidual/métodos
3.
Biochem Biophys Res Commun ; 569: 154-160, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246830

RESUMO

The SARS-CoV-2 N protein binds several cell host proteins including 14-3-3γ, a well-characterized regulatory protein. However, the biological function of this interaction is not completely understood. We analyzed the variability of ∼90 000 sequences of the SARS-CoV-2 N protein, particularly, its mutations in disordered regions containing binding motifs for 14-3-3 proteins. We studied how these mutations affect the binding energy to 14-3-3γ and found that changes positively affecting the predicted interaction with 14-3-3γ are the most successfully spread, with the highest prevalence in the phylogenetic tree. Although most residues are highly conserved within the 14-3-3 binding site, compensatory mutations to maintain the interaction energy of N-14-3-3γ were found, including half of the current variants of concern and interest. Our results suggest that binding of N to 14-3-3γ is beneficial for the virus, thus targeting this viral-host protein-protein interaction seems an attractive approach to explore antiviral strategies.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/análise , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Sítios de Ligação , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Mutação/genética , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Filogenia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...