Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 875: 162685, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894099

RESUMO

Methane (CH4) is steadily increasing in the atmosphere from different sources including wetlands. However, there is limited landscape level CH4 flux data in deltaic coastal systems where the availability of freshwater is impacted by the combined effect of climate change and anthropogenic impacts. Here we determine potential CH4 fluxes in oligohaline wetlands and benthic sediments in the Mississippi River Delta Plain (MRDP), which is undergoing the highest rate of wetland loss and most extensive hydrological wetland restoration in North America. We evaluate potential CH4 fluxes in two contrasting deltaic systems, one undergoing sediment accretion as result of a freshwater and sediment diversions (Wax Lake Delta, WLD), and one experiencing net land loss (Barataria-Lake Cataouatche, BLC). Short- (<4 days) and long-term (36 days) incubations using soil and sediment intact cores and slurries were performed at different temperatures representing seasonal differences (10, 20, 30 °C). Our study revealed that all habitats were net sources of atmospheric CH4 in all seasons, and CH4 fluxes were generally the highest for the 20 °C incubation. The CH4 flux was higher in the marsh habitat of the recently formed delta system (WLD) with total carbon content of 5-24 mg C cm-3 compared to the marsh habitat in BLC, which had high soil carbon content of 67-213 mg C cm-3. This suggests that the quantity of soil organic matter might not be a determining factor in CH4 flux. Overall, benthic habitats were found to have the lowest CH4 fluxes indicating that projected future conversions of marshes to open water in this region will impact the total wetland CH4 emission, although the overall contribution of such conversions to the regional and global carbon budgets is still unknown. Further research is needed to expand the CH4 flux studies by simultaneously using several methods across different wetland habitats.

2.
Sci Total Environ ; 819: 152942, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007602

RESUMO

Nitrate (NO3-) and ammonium (NH4+) are reactive nitrogen (Nr) forms that can exacerbate eutrophication in coastal regions. NO3- can be lost to the atmosphere as N2 gas driven by direct denitrification, coupled nitrification-denitrification and annamox or retained within the ecosystems through conversion of NO3- to NH4+ via dissimilatory nitrate reduction to ammonium (DNRA). Denitrification and DNRA are competitive pathways and hence it is critical to evaluate their functional biogeochemical role. However, there is limited information about the environmental factors driving DNRA in oligohaline habitats, especially within deltaic regions where steep salinity gradients define wetland spatiotemporal distribution. Here we use the Isotope Pairing Technique to evaluate the effect of temperature (10, 20, 30 °C) and in situ soil/sediment organic matter (OM%) on total denitrification (Dtotal = direct + coupled nitrification) and DNRA rates in oligohaline forested/marsh wetlands soils and benthic sediment habitats at two sites representing prograding (Wax Lake Delta, WLD) and eroding (Barataria- Lake Cataouatche, BLC) deltaic stages in the Mississippi River Delta Plain (MRDP). Both sites receive MR water with high NO3- (>40 µM) concentrations during the year via river diversions. Denitrification rates were significantly higher (range: 18.0 ± 0.4-113.0 ± 10.6 µmol m-2 h-1) than DNRA rates (range: 0.7 ± 0.2-9.2 ± 0.3 µmol m-2 h-1). Therefore, DNRA represented on average < 10% of the total NO3- reduction (DNRA + Dtotal). Unlike denitrification, DNRA showed no consistent response to temperature. These results indicate that DNRA in wetland soils and benthic sediment is not a major nitrogen transformation in oligohaline regions across the MRDP regardless of wide range of OM% content in these eroding and prograding delta lobes.


Assuntos
Compostos de Amônio , Compostos de Amônio/metabolismo , Desnitrificação , Ecossistema , Nitratos/metabolismo , Nitrogênio , Áreas Alagadas
3.
Sci Rep ; 11(1): 13927, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230502

RESUMO

Mangroves are the most blue-carbon rich coastal wetlands contributing to the reduction of atmospheric CO2 through photosynthesis (sequestration) and high soil organic carbon (C) storage. Globally, mangroves are increasingly impacted by human and natural disturbances under climate warming, including pervasive pulsing tropical cyclones. However, there is limited information assessing cyclone's functional role in regulating wetlands carbon cycling from annual to decadal scales. Here we show how cyclones with a wide range of integrated kinetic energy (IKE) impact C fluxes in the Everglades, a neotropical region with high cyclone landing frequency. Using long-term mangrove Net Primary Productivity (Litterfall, NPPL) data (2001-2018), we estimated cyclone-induced litterfall particulate organic C (litter-POC) export from mangroves to estuarine waters. Our analysis revealed that this lateral litter-POC flux (71-205 g C m-2 year-1)-currently unaccounted in global C budgets-is similar to C burial rates (69-157 g C m-2 year-1) and dissolved inorganic carbon (DIC, 61-229 g C m-2 year-1) export. We proposed a statistical model (PULITER) between IKE-based pulse index and NPPL to determine cyclone's impact on mangrove role as C sink or source. Including the cyclone's functional role in regulating mangrove C fluxes is critical to developing local and regional climate change mitigation plans.

4.
Sci Total Environ ; 717: 137217, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070897

RESUMO

Submerged aquatic vegetation (SAV) thrives across the estuarine salinity gradient providing valuable ecosystem services. Within the saline portion of estuaries, seagrass areas are frequently cited as hotspots for their role in capturing and retaining organic carbon (Corg). Non-seagrass SAV, located in the fresh to brackish estuarine areas, may also retain significant soil Corg, yet their role remains unquantified. Given rapidly occurring landscape and salinity changes due to human and natural disturbances, landscape level carbon pool estimates from estuarine SAV habitat blue carbon estimates are needed. We assessed Corg stocks in SAV habitat soils from estuarine freshwater to saline habitats (interior deltaic) to saline barrier islands (Chandeleur Island) within the Mississippi River Delta Plain (MRDP), Louisiana, USA. SAV habitats contain Corg stocks equivalent to those reported for other estuarine vegetation types (seagrass, salt marsh, mangrove). Interior deltaic SAV Corg stocks (231.6 ± 19.5 Mg Corg ha-1) were similar across the salinity gradient, and significantly higher than at barrier island sites (56.6 ± 10.4 Mg Corg ha-1). Within the MRDP, shallow water SAV habitat covers up to an estimated 28,000 ha, indicating that soil Corg storage is potentially 6.4 ± 0.1 Tg representing an unaccounted Corg pool. Extrapolated across Louisiana, and the Gulf of Mexico, this represents a major unaccounted pool of soil Corg. As marshes continue to erode, the ability of coastal SAV habitat to offset some of the lost carbon sequestration may be valuable. Our estimates of Corg sequestration rates indicated that conversion of eroding marsh to potential SAV habitat may help to offset the reduction of Corg sequestration rates. Across Louisiana, we estimated SAV to offset this loss by as much as 79,000 Mg C yr-1 between the 1960s and 2000s.

5.
Proc Natl Acad Sci U S A ; 117(9): 4831-4841, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071233

RESUMO

Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma's deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y-1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm-3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma's impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha-1 d-1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise.

6.
Ecology ; 101(5): e02988, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958144

RESUMO

Long-term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long-term directional changes (sea-level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater-to-marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low-temperature anomalies) and long-term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long-term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low-temperature events (2010 and 2011) and a hurricane (2017). Long-term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1-50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long-term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.


Assuntos
Ecossistema , Áreas Alagadas , Água Doce , Nutrientes , Rios
7.
Sci Total Environ ; 651(Pt 1): 122-133, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30227282

RESUMO

The interactions between the microbial reduction of Fe (III) oxides and sediment geochemistry are poorly understood and mostly unknown for the Louisiana deltaic plain. This study evaluates the potential of P mobilization for this region during bacterially mediated redox reactions. Samples were collected from two wetland habitats (forested wetland ridge, and marsh) characterized by variations in vegetation structure and elevation in the currently prograding Wax Lake Delta (WLD) and two habitats (wetland marsh, and benthic channel) in degrading Barataria Bay in Lake Cataouatche (BLC). Our results show that PO43- mobilization from WLD and BLC habitats were negligible under aerobic condition. Under anaerobic condition, there is a potential for significant release of PO43- from sediment and wetland soils. PO43- release in sediments spiked with Fe reducing bacteria Shewanella putrefaciens (Sp-CN32) were significantly higher in all cases with respect to a control treatment. In Wax Lake delta, PO43- release from sediment spiked with Sp-CN32 increased significantly from 0.064±0.001 to 1.460±0.005µmolg-1 in the ridge and from 0.079±0.007 to 2.407±0.001µmolg-1 in the marsh substrates. In Barataria bay, PO43- release increased from 0.103±0.006µmolg-1 to 0.601±0.008µmolg-1 in the channel and 0.050±0.000 to 0.618±0.026µmolg-1 in marsh substrates. The PO43- release from sediment slurries spiked with Sp-CN32 was higher in the WLD habitats (marsh 30-fold, ridge 22-fold) compared to the BLC habitats (marsh 12-fold, channel 6-fold). The increase in PO43- release was significantly correlated with the Fe bound PO43- in sediments from different habitats but not with their organic matter content. This study contributes to our understanding of the release mechanism of PO43- during bacterial mediated redox reaction in wetland soils undergoing pulsing sediment deposition and loss.


Assuntos
Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Shewanella putrefaciens/metabolismo , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/química , Louisiana , Áreas Alagadas
8.
Sensors (Basel) ; 8(4): 2262-2292, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879821

RESUMO

Airborne light detection and ranging (LIDAR) measurements derived before and after Hurricanes Katrina and Wilma (2005) were used to quantify the impact of hurricanes and lightning strikes on the mangrove forest at two sites in Everglades National Park (ENP). Analysis of LIDAR measurements covering 61 and 68 ha areas of mangrove forest at the Shark River and Broad River sites showed that the proportion of high tree canopy detected by the LIDAR after the 2005 hurricane season decreased significantly due to defoliation and breakage of branches and trunks, while the proportion of low canopy and the ground increased drastically. Tall mangrove forests distant from tidal creeks suffered more damage than lower mangrove forests adjacent to the tidal creeks. The hurricanes created numerous canopy gaps, and the number of gaps per square kilometer increased from about 400~500 to 4000 after Katrina and Wilma. The total area of gaps in the forest increased from about 1~2% of the total forest area to 12%. The relative contribution of hurricanes to mangrove forest disturbance in ENP is at least 2 times more than that from lightning strikes. However, hurricanes and lightning strikes disturb the mangrove forest in a related way. Most seedlings in lightning gaps survived the hurricane impact due to the protection of trees surrounding the gaps, and therefore provide an important resource for forest recovery after the hurricane. This research demonstrated that LIDAR is an effective remote sensing tool to quantify the effects of disturbances such as hurricanes and lightning strikes in the mangrove forest.

9.
Oecologia ; 111(1): 109-122, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28307495

RESUMO

The hypothesis that rates of litter turnover in mangroves are controlled by local geophysical processes such as tides has been studied at sites with mostly small tides (<1 m) and minor crab consumption of leaf litter. Our study describes litter dynamics of three riverine mangrove sites (M1, M2, M3), inhabited by the mangrove crab Ucides occidentalis, located in a macrotidal (>3 m) river-dominated tropical estuary in Ecuador (2.5°S latitude). There were statistical effects of site and depth on soil salinities, but all mean salinities were <17 g kg-1. Daily rates of leaf litter fall were higher in the rainy compared to the dry season, although no seasonal effects were observed for other components of litter fall. Annual total litter fall rates were significantly different among sites at 10.64, 6.47, and 7.87 Mg ha-1 year-1 for M1, M2, and M3, respectively. There were significant site (M3 > M2 > M1) and season (rainy > dry) effects on leaf degradation, and both effects were related to differences in the initial nitrogen content of senescent leaves. Mean leaf litter standing crop among the sites ranged from 1.53 to 9.18 g m-2, but amounts were strongly seasonal with peak values during September in both years of our study (no significant year effect) at all three sites. Leaf turnover rates based on leaf fall estimates and litter standing crop were 10- to 20-fold higher than estimated from rates of leaf degradation, indicating the significant effect of leaf transport by tides and crabs. Field experiments demonstrated that the mangrove crab can remove daily additions of leaf material within 1 h at all three sites, except during August-October, when the crab is inactive on the forest floor. Even though there is seasonally elevated leaf accumulation on the forest floor during this time, leaf turnover rates are much higher than expected based on leaf degradation, demonstrating the importance of tidal export. This is the first description of how crabs influence litter dynamics in the New World tropics, and results are similar to higher rates of crab transport of leaf litter in the Old World tropics. Even in riverine mangroves with high geophysical energies, patterns of litter dynamics can be influenced by ecological processes such as crab transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...