Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527045

RESUMO

Pollution produced by exposure to pesticides is a major concern for food security because the negative impacts on pollinators. Fipronil, an insecticide broadly used around the globe has been associated with the ongoing decline of bees. With a characteristic neuroactive toxicodynamic, fipronil leads to cognitive and motor impairments at sublethal dosages. Despite of regional bans, multilevel strategies are necessary for the protection of pollinators. Recent evidence suggests that specific nutrients in the diets of bees may induce protection against insecticides. Here, we evaluated whether the administration of three phytochemicals, namely rutin, kaempferol and p-coumaric acid provide protection to the Africanized honey bee Apis mellifera against oral administration of realistic dosages of fipronil. We tested the potential impairment produced by fipronil and the protection induced by the phytochemicals in learning, 24h memory, sucrose sensitivity and motor control. We found that the administration of fipronil induced a concentration-dependent impairment in learning and motor control, but not 24h memory or sucrose sensitivity across a 24h window. We also found that the administration of rutin, p-coumaric acid, kaempferol and the mixture was innocuous and generally offered protection against the impairments induced by fipronil. Overall, our results indicate that bees can be prophylactically protected against insecticides via nutrition, providing an alternative to the ongoing conflict between the use of insecticides and the decline of pollinators. As the studied phytochemicals are broadly present in nectar and pollen, our results suggest that the nutritional composition, and not only its production, should be considered when implementing strategies of conservation via gardens and co-cropping.


Assuntos
Ácidos Cumáricos , Inseticidas , Transtornos Motores , Pirazóis , Abelhas , Animais , Inseticidas/toxicidade , Quempferóis , Sacarose , Compostos Fitoquímicos , Rutina , Administração Oral , Cognição
2.
Insects ; 14(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36835681

RESUMO

Although theoretical work on optimal migration has been largely restricted to birds, relevant free-flight data are now becoming available for migratory insects. Here we report, for the first time in passion-vine butterflies, that Heliconius sara migrates directionally. To test optimal migration models for insects, we quantified the aerodynamic power curve for free-flying H. sara as they migrated across the Panama Canal. Using synchronized stereo-images from high-speed video cameras, we reconstructed three-dimensional flight kinematics of H. sara migrating naturally across the Panama Canal. We also reconstructed flight kinematics from a single-camera view of butterflies flying through a flight tunnel. We calculated the power requirements for flight for H. sara over a range of flight velocities. The relationship between aerodynamic power and velocity was "J"-shaped across the measured velocities with a minimum power velocity of 0.9 m/s and a maximum range velocity of 2.25 m/s. Migrating H. sara did not compensate for crosswind drift. Changes in airspeed with tailwind drift were consistent with the null hypothesis that H. sara did not compensate for tailwind drift, but they were also not significantly different from those predicted to maximize the migratory range of the insects.

3.
J Exp Biol ; 226(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601985

RESUMO

Across communicative systems, the ability of compound signals to enhance receiver's perception and decoding is a potent explanation for the evolution of complexity. In nature, complex signaling involves spatiotemporal variation in perception of signal components; yet, how the synchrony between components affects performance of the receiver is much less understood. In the coevolution of plants and pollinators, bees are a model for understanding how visual and chemical components of floral displays may interact to influence performance. Understanding whether the temporal dimension of signal components impacts performance is central for evaluating hypotheses about the facilitation of information processing and for predicting how particular trait combinations function in nature. Here, I evaluated the role of the temporal dimension by testing the performance of bumble bees under restrained conditions while learning a bimodal (olfactory and visual) stimulus. I trained bumble bees under six different stimuli varying in their internal synchrony and structure. I also evaluated the acquisition of the individual components. I show that the temporal configuration and the identity of the components impact their combined and separate acquisition. Performance was favored by partial asynchrony and the initial presentation of the visual component, leading to higher acquisition of the olfactory component. This indicates that compound stimuli resembling the partially synchronous presentation of a floral display favor performance in a pollinator, thus highlighting the time dimension as crucial for the enhancement. Moreover, this supports the hypothesis that the evolution of multimodal floral signals may have been favored by the asynchrony perceived by the receiver during free flight.


Assuntos
Flores , Aprendizagem , Abelhas , Animais , Plantas , Olfato , Cognição , Polinização
4.
J Exp Biol ; 225(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36172773

RESUMO

Exposure to pesticides across species has been associated with cognitive and motor impairments. As the problem impacts ecosystem stability, food production and public health, it is urgent to develop multifactorial solutions, from regulatory legislation to pharmacological alternatives that ameliorate the impairments. Fipronil, a commonly used insecticide, acts as a GABAA receptor (GABAAR) antagonist and induces motor impairments in vertebrates and invertebrates. Here, we hypothesized that kaempferol, a secondary metabolite derived from plants, acting as an allosteric modulator of GABAARs, would protect against the negative effects induced by the administration of fipronil in adults of the fruit fly Drosophila melanogaster. We further evaluated our hypothesis via co-administration of flumazenil, a competitive antagonist on the GABAAR, and through in silico analyses. We administered kaempferol prophylactically at three concentrations (10, 30 and 50 µmol l-1) and evaluated its protective effects against motor impairments induced by fipronil. We then used a single dose of kaempferol (50 µmol l-1) to evaluate its protective effect while administering flumazenil. We found that oral administration of fipronil impaired motor control and walking ability. In contrast, kaempferol was innocuous and protected flies from developing the motor-impaired phenotype, whereas the co-administration of flumazenil counteracted these protective effects. These results are supported by the binding of the ligands with the receptor. Together, our results suggest that kaempferol exerts a protective effect against fipronil via positive allosteric modulation of GABAARs, probably within brain areas such as the central complex and the mushroom bodies. These findings further support current attempts to use metabolites derived from plants as protectors against impairments produced by pesticides.


Assuntos
Inseticidas , Transtornos Motores , Praguicidas , Animais , Inseticidas/toxicidade , Drosophila melanogaster/metabolismo , Receptores de GABA-A/metabolismo , Flumazenil , Quempferóis/farmacologia , Flavonoides , Ligantes , Ecossistema , Drosophila/metabolismo , Antagonistas de Receptores de GABA-A
5.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000283

RESUMO

The ongoing decline of bee populations and its impact on food security demands integrating multiple strategies. Sublethal impairments associated with exposure to insecticides, affecting the individual and the colony levels, have led to insecticide moratoria and bans. However, legislation alone is not sufficient and remains a temporary solution to an evolving market of insecticides. Here, we asked whether bees can be prophylactically protected against sublethal cognitive effects of two major neurotoxic insecticides, imidacloprid and fipronil, with different mechanisms of action. We evaluated the protective effect of the prophylactic administration of the flavonoid rutin, a secondary plant metabolite, present in nectar and pollen, and known for its neuroprotective properties. Following controlled or ad libitum administration of rutin, foragers of the North American bumble bee Bombus impatiens received oral administration of the insecticides at sublethal realistic dosages. Learning acquisition, memory retention and decision speed were evaluated using olfactory absolute conditioning of the proboscis extension response. We show that the insecticides primarily impair acquisition but not retention or speed of the conditioned proboscis extension response. We further show that the administration of the flavonoid rutin successfully protects the bees against impairments produced by acute and chronic administration of insecticides. Our results suggest a new avenue for the protection of bees against sublethal cognitive effects of insecticides.


Assuntos
Disfunção Cognitiva , Inseticidas , Animais , Abelhas , Flavonoides , Imidazóis/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos , Pirazóis , Rutina/farmacologia
6.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35531628

RESUMO

Multisensory integration is assumed to entail benefits for receivers across multiple ecological contexts. However, signal integration effectiveness is constrained by features of the spatiotemporal and intensity domains. How sensory modalities are integrated during tasks facilitated by learning and memory, such as pollination, remains unsolved. Honey bees use olfactory and visual cues during foraging, making them a good model to study the use of multimodal signals. Here, we examined the effect of stimulus intensity on both learning and memory performance of bees trained using unimodal or bimodal stimuli. We measured the performance and the latency response across planned discrete levels of stimulus intensity. We employed the conditioning of the proboscis extension response protocol in honey bees using an electromechanical setup allowing us to control simultaneously and precisely olfactory and visual stimuli at different intensities. Our results show that the bimodal enhancement during learning and memory was higher as the intensity decreased when the separate individual components were least effective. Still, this effect was not detectable for the latency of response. Remarkably, these results support the principle of inverse effectiveness, traditionally studied in vertebrates, predicting that multisensory stimuli are more effectively integrated when the best unisensory response is relatively weak. Thus, we argue that the performance of the bees while using a bimodal stimulus depends on the interaction and intensity of its individual components. We further hold that the inclusion of findings across all levels of analysis enriches the traditional understanding of the mechanics and reliance of complex signals in honey bees.


Assuntos
Aprendizagem , Olfato , Animais , Abelhas , Sinais (Psicologia)
7.
J Exp Biol ; 224(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33948646

RESUMO

Learning and memory are major cognitive processes strongly tied to the life histories of animals. In ants, chemotactile information generally plays a central role in social interaction, navigation and resource exploitation. However, in hunters, visual information should take special relevance during foraging, thus leading to differential use of information from different sensory modalities. Here, we aimed to test whether a hunter, the neotropical ant Ectatomma ruidum, differentially learns stimuli acquired through multiple sensory channels. We evaluated the performance of E. ruidum workers when trained using olfactory, mechanical, chemotactile and visual stimuli under a restrained protocol of appetitive learning. Conditioning of the maxilla labium extension response enabled control of the stimuli provided. Our results show that ants learn faster and remember for longer when trained using chemotactile or visual stimuli than when trained using olfactory and mechanical stimuli separately. These results agree with the life history of E. ruidum, characterized by a high relevance of chemotactile information acquired through antennation as well as the role of vision during hunting.


Assuntos
Formigas , Animais , Humanos , Aprendizagem , Memória , Olfato
8.
J Exp Biol ; 223(Pt 10)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32321753

RESUMO

Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better than or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurate control of the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound.


Assuntos
Aprendizagem , Olfato , Animais , Abelhas , Flores , Odorantes
9.
Anim Cogn ; 15(6): 1183-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22837045

RESUMO

In honeybees, the conditioning of the proboscis extension response (PER) has provided a powerful tool to explore the mechanisms underlying olfactory learning and memory. Unfortunately, PER conditioning does not work well for visual stimuli in intact honeybees, and performance is improved only after antennal amputation, thus limiting the analysis of visual learning and multimodal integration. Here, we study visual learning using the PER protocol in harnessed bumblebees, which exhibit high levels of odor learning under restrained conditions. We trained bumblebees in a differential task in which two colors differed in their rewarding values. We recorded learning performance as well as response latency and accuracy. Bumblebees rapidly learned the task and discriminated the colors within the first two trials. However, performance varied between combinations of colors and was higher when blue or violet was associated with a high reward. Overall, accuracy and speed were negatively associated, but both components increased during acquisition. We conclude that PER conditioning is a good tool to study visual learning, using Bombus impatiens as a model, opening new possibilities to analyze the proximate mechanisms of visual learning and memory, as well as the process of multimodal integration and decision-making.


Assuntos
Aprendizagem por Associação , Percepção de Cores , Animais , Abelhas , Tomada de Decisões , Modelos Animais
10.
Brain Behav Evol ; 75(2): 138-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20516659

RESUMO

Brain plasticity is a common phenomenon across animals and in many cases it is associated with behavioral transitions. In social insects, such as bees, wasps and ants, plasticity in a particular brain compartment involved in multisensory integration (the mushroom body) has been associated with transitions between tasks differing in cognitive demands. However, in most of these cases, transitions between tasks are age-related, requiring the experimental manipulation of the age structure in the studied colonies to distinguish age and experience-dependent effects. To better understand the interplay between brain plasticity and behavioral performance it would therefore be advantageous to study species whose division of labor is not age-dependent. Here, we focus on brain plasticity in the bumblebee Bombus occidentalis, in which division of labor is strongly affected by the individual's body size instead of age. We show that, like in vertebrates, body size strongly correlates with brain size. We also show that foraging experience, but not age, significantly correlates with the increase in the size of the mushroom body, and in particular one of its components, the medial calyx. Our results support previous findings from other social insects suggesting that the mushroom body plays a key role in experience-based decision making. We also discuss the use of bumblebees as models to analyze neural plasticity and the association between brain size and behavioral performance.


Assuntos
Abelhas/anatomia & histologia , Abelhas/fisiologia , Plasticidade Neuronal , Envelhecimento , Animais , Comportamento Apetitivo/fisiologia , Tamanho Corporal , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Tamanho do Órgão , Distribuição Aleatória
11.
Commun Integr Biol ; 2(5): 437-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19907712

RESUMO

The difficulty to simultaneously record neural activity and behavior presents a considerable limitation for studying mechanisms of insect learning and memory. The challenge is finding a model suitable for the use of behavioral paradigms under the restrained conditions necessary for neural recording. In honeybees, Pavlovian conditioning relying on the proboscis extension reflex (PER) has been used with great success to study different aspects of insect cognition. However, it is desirable to combine the advantages of the PER with a more robust model that allows simultaneous electrical or optical recording of neural activity. Here, we briefly discuss the potential use of bumblebees as models for the study of learning and memory under restrained conditions. We base our arguments on the well-known cognitive abilities of bumblebees, their social organization and phylogenetic proximity to honeybees, our recent success using Pavlovian conditioning to study learning in two bumblebee species, and on the recently demonstrated robustness of bumblebees under conditions suitable for electrophysiological recording.

12.
Naturwissenschaften ; 96(7): 851-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19322551

RESUMO

In many respects, the behavior of bumblebees is similar to that of the closely related honeybees, a long-standing model system for learning and memory research. Living in smaller and less regulated colonies, bumblebees are physiologically more robust and thus have advantages in particular for indoor experiments. Here, we report results on Pavlovian odor conditioning of bumblebees using the proboscis extension reflex (PER) that has been successfully used in honeybee learning research. We examine the effect of age, body size, and experience on learning and memory performance. We find that age does not affect learning and memory ability, while body size positively correlates with memory performance. Foraging experience seems not to be necessary for learning to occur, but it may contribute to learning performance as bumblebees with more foraging experience on average were better learners. The PER represents a reliable tool for learning and memory research in bumblebees and allows examining interspecific similarities and differences of honeybee and bumblebee behavior, which we discuss in the context of social organization.


Assuntos
Abelhas/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Olfato/fisiologia , Animais , Condicionamento Operante , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Feminino , Atividade Motora/fisiologia , Pupa/fisiologia , Reflexo/fisiologia , Resposta de Saciedade , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...