Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Learn Mem ; 25(1): 45-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246980

RESUMO

Most long-term memories are forgotten. What happens, then, to the changes in neuronal gene expression that were initially required to encode and maintain the memory? Here we show that the decay of recall for long-term sensitization memory in Aplysia is accompanied both by a form of savings memory (easier relearning) and by persistent transcriptional regulation. A behavioral experiment (N = 14) shows that sensitization training produces a robust long-term sensitization memory, but that recall fades completely within 1 wk. This apparent forgetting, though, is belied by persistent savings memory, as we found that a weak reminder protocol reinstates a long-term sensitization memory only on the previously trained side of the body. Using microarray (N = 8 biological replicates), we found that transcriptional regulation largely decays along with recall. Of the transcripts known to be regulated 1 d after training, 98% (1172/1198) are no longer significantly regulated 7 d after training. Still, there is a small set of transcripts which remain strongly regulated even when recall is absent. Using qPCR (N = 11 additional biological replicates) we confirmed that these include the peptide transmitter FMRFamide, a transcript encoding a putative homolog of spectrin beta chain (Genbank: EB255259) , a transcript encoding a protein with a predicted EF-hand calcium-binding domain (Genbank: EB257711), and eight uncharacterized transcripts. To our knowledge, this is the first work to show that transcriptional changes evoked by learning can outlast recall. The small set of transcriptional changes that persist could mediate the rapid relearning of the memory (savings), or the decay of recall, or both, or neither.


Assuntos
Gânglios dos Invertebrados/metabolismo , Regulação da Expressão Gênica , Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Transcrição Gênica , Animais , Aplysia , Eletrochoque , Análise em Microsséries , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Reflexo/fisiologia , Transcriptoma
2.
Learn Mem ; 24(10): 502-515, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28916625

RESUMO

We characterized the transcriptional response accompanying maintenance of long-term sensitization (LTS) memory in the pleural ganglia of Aplysia californica using microarray (N = 8) and qPCR (N = 11 additional samples). We found that 24 h after memory induction there is strong regulation of 1198 transcripts (748 up and 450 down) in a pattern that is almost completely distinct from what is observed during memory encoding (1 h after training). There is widespread up-regulation of transcripts related to all levels of protein production, from transcription (e.g., subunits of transcription initiation factors) to translation (e.g., subunits of eIF1, eIF2, eIF3, eIF4, eIF5, and eIF2B) to activation of components of the unfolded protein response (e.g., CREB3/Luman, BiP, AATF). In addition, there are widespread changes in transcripts related to cytoskeleton function, synaptic targeting, synaptic function, neurotransmitter regulation, and neuronal signaling. Many of the transcripts identified have previously been linked to memory and plasticity (e.g., Egr, menin, TOB1, IGF2 mRNA binding protein 1/ZBP-1), though the majority are novel and/or uncharacterized. Interestingly, there is regulation that could contribute to metaplasticity potentially opposing or even eroding LTS memory (down-regulation of adenylate cyclase and a putative serotonin receptor, up-regulation of FMRFa and a FMRFa receptor). This study reveals that maintenance of a "simple" nonassociative memory is accompanied by an astonishingly complex transcriptional response.


Assuntos
Gânglios dos Invertebrados/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Transcriptoma , Animais , Aplysia , Eletrochoque , Lateralidade Funcional , Análise em Microsséries , RNA Mensageiro/metabolismo , Reflexo/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cauda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...