Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 113(Pt B): 796-801, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26621244

RESUMO

R-phenibut is a γ-aminobutyric acid (GABA)-B receptor and α2-δ subunit of the voltage-dependent calcium channel (VDCC) ligand. The aim of the present study was to test the effects of R-phenibut on the motor, sensory and tactile functions and histological outcomes in rats following transient middle cerebral artery occlusion (MCAO). In this study, MCAO was induced by filament insertion (f-MCAO) or endothelin-1 (ET1) microinjection (ET1-MCAO) in male Wistar or CD rats, respectively. R-phenibut was administrated at doses of 10 and 50mg/kg for 14 days in the f-MCAO or 7 days in the ET1-MCAO. The vibrissae-evoked forelimb-placing and limb-placing tests were used to assess sensorimotor, tactile and proprioceptive function. Quantitative reverse transcriptase-PCR was used to detect brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) gene expression in the damaged brain hemisphere. Both f-MCAO and ET1-MCAO resulted in statistically significant impairment of sensorimotor function and brain infarction. R-phenibut at a dose of 10mg/kg significantly improved histological outcome at day 7 in the ET1-MCAO. R-phenibut treatment at a dose of 50mg/kg significantly alleviated reduction of brain volume in damaged hemisphere in both f-MCAO and ET1-MCAO. In R-phenibut treated animals a trend of recovery of tactile and proprioceptive stimulation in the vibrissae-evoked forelimb-placing test was observed. After R-phenibut treatment at a dose of 50mg/kg statistically significant increase of BDNF and VEGF gene expression was found in damaged brain hemisphere. Taken together, obtained results provide evidence for the neuroprotective activity of R-phenibut in experimental models of stroke. These effects might be related to the modulatory effects of the drug on the GABA-B receptor and α2-δ subunit of VDCC.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Proteínas do Olho/farmacologia , Fármacos Neuroprotetores/farmacologia , Córtex Sensório-Motor/efeitos dos fármacos , Animais , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Modelos Animais de Doenças , Membro Anterior/efeitos dos fármacos , Membro Anterior/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores de GABA-B/metabolismo , Córtex Sensório-Motor/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Pharmacol Biochem Behav ; 137: 23-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26234470

RESUMO

Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05µM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain disorders.


Assuntos
Aminas/metabolismo , Analgésicos/metabolismo , Canais de Cálcio/metabolismo , Ácidos Cicloexanocarboxílicos/metabolismo , Medição da Dor/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Aminas/farmacologia , Analgésicos/farmacologia , Animais , Ácidos Cicloexanocarboxílicos/farmacologia , Relação Dose-Resposta a Droga , Gabapentina , Masculino , Camundongos Endogâmicos ICR , Medição da Dor/métodos , Ligação Proteica/fisiologia , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...