Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15380, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965268

RESUMO

Concerns about challenges with water availability in the Tadla Plain region of Morocco have grown as a result of groundwater contamination brought on by human activity, climate change, and insufficient groundwater management. The objective of the study is to measure the number of resistant bacteria in the groundwater of Beni Moussa and Beni Aamir, as well as to evaluate the level of water pollution in this area. 200 samples were therefore gathered from 43 wells over the course of four seasonal campaigns in 2017 and 2018. Additionally, the samples were examined to determine whether Salmonella species were present and if they were resistant to the 16 antibiotics that were tested. Salmonella spp. have been identified in 31 isolated strains in total, accounting for 18.02% of all isolated strains. Data on antibiotic resistance show that 58.1% of Salmonella spp. strains are multidrug-resistant (MDR); 38.7% of Salmonella strains are tolerant to at least six antibiotics, 19.4% to at least nine antibiotics, 9.7% to four to seven antibiotics, 6.5% to at least eleven antibiotics, and the remaining 3.2% to up to twelve antibiotics. A considerable level of resistance to cefepime (61.29%), imipenem (54.84%), ceftazidime (45.16%), ofloxacin (70.97%), and ertapenem (74.19%) was found in the data. Consequently, it is important to monitor and regulate the growth of MDR in order to prevent the groundwater's quality from declining.


Assuntos
Antibacterianos , Água Subterrânea , Salmonella , Marrocos , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Antibacterianos/farmacologia , Água Subterrânea/microbiologia , Humanos , Microbiologia da Água , Testes de Sensibilidade Microbiana , Incidência , Poços de Água , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla
3.
RSC Adv ; 13(30): 20856-20867, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448639

RESUMO

Bimetallic nanoparticles have received much attention recently due to their multifunctional applications, and synergistic potential at low concentrations. In the current study, bimetallic boron oxide-zinc oxide nanoparticles (B2O3-ZnO NPs) were synthesized by an eco-friendly, and cost-effective method through the utilization of gum arabic in the presence of gamma irradiation. Characterization of the synthesized bimetallic B2O3-ZnO NPs revealed the successful synthesis of bimetallic NPs on the nano-scale, and good distribution, in addition to formation of a stable colloidal nano-solution. Furthermore, the bimetallic B2O3-ZnO NPs were assessed for anticancer, antimicrobial and antioxidant activities. The evaluation of the cytotoxicity of bimetallic B2O3-ZnO NPs on Vero and Wi38 normal cell lines illustrated that bimetallic B2O3-ZnO NPs are safe in use where IC50 was 384.5 and 569.2 µg ml-1, respectively. The bimetallic B2O3-ZnO NPs had anticancer activity against Caco 2 where IC50 was 80.1 µg ml-1. Furthermore, B2O3-ZnO NPs exhibited promising antibacterial activity against E. coli, P. aeruginosa, B. subtilis and S. aureus, where MICs were 125, 62.5, 125 and 62.5 µg ml-1 respectively. Likewise, B2O3-ZnO NPs had potential antifungal activity against C. albicans as unicellular fungi (MIC was 62.5 µg ml-1). Moreover, B2O3-ZnO NPs displayed antioxidant activity (IC50 was 102.6 µg ml-1). In conclusion, novel bimetallic B2O3-ZnO NPs were successfully synthesized using gum arabic under gamma radiation, where they displayed anticancer, antimicrobial and antioxidant activities.

4.
AAPS PharmSciTech ; 22(7): 246, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617166

RESUMO

Andrographolide (AG) is an antitumor phytochemical that acts against non-Hodgkin's lymphoma. However, AG shows low oral bioavailability due to extensive first-pass metabolism and P-glycoprotein efflux. Novel biocompatible lipoprotein-simulating nanosystems, emulsomes (EMLs), have gained significant attention due to their composition of natural components, in addition to being lymphotropic. Loading AG on EMLs is believed to mitigate the disadvantage of AG and enhance its lymphatic transport. This study developed a chylomicron-simulating system (EMLs) as a novel tool to overcome the AG oral delivery obstacles. Optimized EML-AG had a promising vesicular size of 281.62 ± 1.73 nm, a zeta potential of - 22.73 ± 0.06 mV, and a high entrapment efficiency of 96.55% ± 0.25%, which favors lymphatic targeting. In vivo pharmacokinetic studies of EML-AG showed significant enhancement (> sixfold increase) in the rate and extent of AG absorption compared with free AG. However, intraperitoneal injection of a cycloheximide inhibitor caused a significant decrease in AG absorption (~ 52%), confirming the lymphatic targeting potential of EMLs. Therefore, EMLs can be a promising novel nanoplatform for circumventing AG oral delivery obstacles and provide targeted delivery to the lymphatic system at a lower dose with fewer side effects.


Assuntos
Diterpenos , Administração Oral , Disponibilidade Biológica , Compostos Fitoquímicos
5.
Nanomedicine (Lond) ; 16(22): 1983-1998, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420422

RESUMO

Aim: The aim of this study was to elaborate on 'bioemulsomes,' novel biocompatible lipoprotein analogs for effective lymphatic transport of baicalin (BCL). Methods: BCL bioemulsomes were developed and optimized and in vitro physicochemical characterization performed. The bioavailability of BCL bioemulsomes compared with free BCL was investigated using in vivo pharmacokinetics studies. Finally, BCL lymphatic transport was assessed via cycloheximide blockade assay. Results: Optimized BCL-loaded nanoemulsomes showed promising in vitro characteristics that favor lymphatic targeting. In vivo pharmacokinetics showed a significant improvement in bioavailability over free BCL. A significant decrease in BCL emulsome absorption (33%) was exhibited after chemical blockage of the lymphatic pathway, confirming the lymphatic transport potential. Conclusion: Bioemulsomes could be a promising tool for bypassing BCL oral delivery hurdles as well as lymphatic transport, paving the way for potential treatment of lymphoma.


Assuntos
Flavonoides , Administração Oral , Animais , Disponibilidade Biológica , Ratos , Ratos Sprague-Dawley
6.
Biochem Biophys Rep ; 10: 318-324, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955759

RESUMO

Adipocyte fatty acid-binding protein (AFABP: FABP4) is a member of the intracellular lipid-binding protein family that is thought to target long-chain fatty acids to nuclear receptors such as peroxisome proliferator-activated receptor gamma (PPARγ), which in turn plays roles in insulin resistance and obesity. A molecular understanding of AFABP function requires robust isolation of the protein in liganded and free forms as well as characterization of its oligomerization state(s) under physiological conditions. We report development of a protocol to optimize the production of members of this protein family in pure form, including removal of their bound lipids by mixing with hydrophobically functionalized hydroxypropyl dextran beads and validation by two-dimensional NMR spectroscopy. The formation of self-associated or covalently bonded protein dimers was evaluated critically using gel filtration chromatography, revealing conditions that promote or prevent formation of disulfide-linked homodimers. The resulting scheme provides a solid foundation for future investigations of AFABP interactions with key ligand and protein partners involved in lipid metabolism.

7.
Org Lett ; 9(26): 5461-4, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18020348

RESUMO

Curcumin, the primary active ingredient in the spice turmeric, was converted to reactive monofunctional derivatives (carboxylic acid/azide/alkyne). The derivatives were employed to produce a 3 + 2 azide-alkyne "clicked" curcumin dimer and a poly(amidoamine) (PAMAM) dendrimer-curcumin conjugate. The monofunctional curcumin derivatives retain biological activity and are efficient for labeling and dissolving amyloid fibrils. The curcumin dimer selectively destroys human neurotumor cells. The synthetic methodology developed affords a general strategy for attaching curcumin to various macromolecular scaffolds.


Assuntos
Curcumina/química , Poliaminas/química , Dendrímeros , Dimerização , Humanos , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA