Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 152: 106372, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516574

RESUMO

Uncontrolled proliferation of B-lymphoblast cells is a common characterization of Acute Lymphoblastic Leukemia (ALL). B-lymphoblasts are found in large numbers in peripheral blood in malignant cases. Early detection of the cell in bone marrow is essential as the disease progresses rapidly if left untreated. However, automated classification of the cell is challenging, owing to its fine-grained variability with B-lymphoid precursor cells and imbalanced data points. Deep learning algorithms demonstrate potential for such fine-grained classification as well as suffer from the imbalanced class problem. In this paper, we explore different deep learning-based State-Of-The-Art (SOTA) approaches to tackle imbalanced classification problems. Our experiment includes input, GAN (Generative Adversarial Networks), and loss-based methods to mitigate the issue of imbalanced class on the challenging C-NMC and ALLIDB-2 dataset for leukemia detection. We have shown empirical evidence that loss-based methods outperform GAN-based and input-based methods in imbalanced classification scenarios.


Assuntos
Algoritmos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
2.
Comput Intell Neurosci ; 2021: 3111676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956345

RESUMO

Generation Z is a data-driven generation. Everyone has the entirety of humanity's knowledge in their hands. The technological possibilities are endless. However, we use and misuse this blessing to face swap using deepfake. Deepfake is an emerging subdomain of artificial intelligence technology in which one person's face is overlaid over another person's face, which is very prominent across social media. Machine learning is the main element of deepfakes, and it has allowed deepfake images and videos to be generated considerably faster and at a lower cost. Despite the negative connotations associated with the phrase "deepfakes," the technology is being more widely employed commercially and individually. Although it is relatively new, the latest technological advances make it more and more challenging to detect deepfakes and synthesized images from real ones. An increasing sense of unease has developed around the emergence of deepfake technologies. Our main objective is to detect deepfake images from real ones accurately. In this research, we implemented several methods to detect deepfake images and make a comparative analysis. Our model was trained by datasets from Kaggle, which had 70,000 images from the Flickr dataset and 70,000 images produced by styleGAN. For this comparative study of the use of convolutional neural networks (CNN) to identify genuine and deepfake pictures, we trained eight different CNN models. Three of these models were trained using the DenseNet architecture (DenseNet121, DenseNet169, and DenseNet201); two were trained using the VGGNet architecture (VGG16, VGG19); one was with the ResNet50 architecture, one with the VGGFace, and one with a bespoke CNN architecture. We have also implemented a custom model that incorporates methods like dropout and padding that aid in determining whether or not the other models reflect their objectives. The results were categorized by five evaluation metrics: accuracy, precision, recall, F1-score, and area under the ROC (receiver operating characteristic) curve. Amongst all the models, VGGFace performed the best, with 99% accuracy. Besides, we obtained 97% from the ResNet50, 96% from the DenseNet201, 95% from the DenseNet169, 94% from the VGG19, 92% from the VGG16, 97% from the DenseNet121 model, and 90% from the custom model.


Assuntos
Inteligência Artificial , Mídias Sociais , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...