Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Arch Microbiol ; 206(2): 72, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252323

RESUMO

Antimicrobial agents are used to treat microbial ailments, but increased use of antibiotics and exposure to infections in healthcare facilities and hospitals as well as the excessive and inappropriate use of antibiotics at the society level lead to the emergence of multidrug-resistant (MDR) bacteria. Antimicrobial resistance (AMR) is considered a public health concern and has rendered the treatment of different infections more challenging. The bacterial strains develop resistance against antimicrobial agents by limiting intracellular drug accumulation (increasing efflux or decreasing influx of antibiotics), modification and inactivation of drugs and its targets, enzymatic inhibition, and biofilm formation. However, the driving factors of AMR include the sociocultural and economic circumstances of a country, the use of falsified and substandard medicines, the use of antibiotics in farm animals, and food processing technologies. These factors make AMR one of the major menaces faced by mankind. In order to promote reciprocal learning, this article summarizes the current AMR situation in Pakistan and how it interacts with the health issues related to the COVID-19 pandemic. The COVID-19 pandemic aids in illuminating the possible long-term impacts of AMR, which are less immediate but not less severe since their measures and effects are equivalent. Impact on other sectors, including the health industry, the economy, and trade are also discussed. We conclude by summarizing the several approaches that could be used to address this issue.


Assuntos
Antibacterianos , COVID-19 , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Pandemias/prevenção & controle , Saúde Pública
2.
ACS Omega ; 8(39): 35956-35963, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810636

RESUMO

The present work reports the photocatalytic degradation of alizarin red (AR) using Cu-doped manganese oxide (MH16-MH20) nanomaterials as catalysts under UV light irradiation. Cu-doped manganese oxides were synthesized by a very facile hydrothermal approach and characterized by energy dispersive X-ray spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis spectroscopy, and photoluminescence techniques. The structural, morphological, and optical characterization revealed that the synthesized compounds are nanoparticles (38.20-54.10 nm), grown in high mesoporous density (constant C > 100), possessing a tetragonal phase, and exhibiting 2.98-3.02 eV band gap energies. Synthesized materials were utilized for photocatalytic AR dye degradation under UV light which was monitored by UV-visible spectroscopy and % AR degradation was calculated at various time intervals from absorption spectra. More than 60% AR degradation at various time intervals was obtained for MH16-MH20 indicating their good catalytic efficiencies for AR removal. However, MH20 was found to be the most efficient catalyst showing more than 84% degradation, hence MH20 was used to investigate the effect of various catalytic doses, AR concentrations, and pH of the medium on degradation. More than 50% AR degradation was obtained for all studied parameters with MH20 whereas the pseudo-first-order kinetic model was found to be the best-fitted kinetic model for AR degradation with k = 0.0015 and R2 = 0.99 indicating a significant correlation between experimental data.

3.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375137

RESUMO

A series of carbamothioyl-furan-2-carboxamide derivatives were synthesized using a one-pot strategy. Compounds were obtained in moderate to excellent yields (56-85%). Synthesized derivatives were evaluated for their anti-cancer (HepG2, Huh-7, and MCF-7 human cancer cell lines) and anti-microbial potential. Compound p-tolylcarbamothioyl)furan-2-carboxamide showed the highest anti-cancer activity at a concentration of 20 µg/mL against hepatocellular carcinoma, with a cell viability of 33.29%. All compounds showed significant anti-cancer activity against HepG2, Huh-7, and MCF-7, while indazole and 2,4-dinitrophenyl containing carboxamide derivatives were found to be less potent against all tested cell lines. Results were compared with the standard drug doxorubicin. Carboxamide derivatives possessing 2,4-dinitrophenyl showed significant inhibition against all bacterial and fungal strains with inhibition zones (I.Z) in the range of 9-17 and MICs were found to be 150.7-295 µg/mL. All carboxamide derivatives showed significant anti-fungal activity against all tested fungal strains. Gentamicin was used as the standard drug. The results showed that carbamothioyl-furan-2-carboxamide derivatives could be a potential source of anti-cancer and anti-microbial agents.


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia , Células MCF-7 , Fungos , Furanos/farmacologia , Antineoplásicos/farmacologia , Estrutura Molecular , Proliferação de Células
4.
Front Chem ; 11: 1126171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201130

RESUMO

Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO2 has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks' height, minor peak shift at 2θ (28.525°) and peaks' broadening in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2 whereas a lower absorption response was observed for Ni-doped CeO2. An interesting observation regarding the lowering of indirect bandgap energy of Fe-doped CeO2 (∼2.7 eV) and an increase in Ni-doped CeO2 (∼3.0 eV) in comparison to pristine CeO2 (∼2.9 eV) was noticed. The process of e -- h + recombination in the synthesized photocatalysts was also investigated through photoluminescence spectroscopy. The photocatalytic studies revealed the greater photocatalytic activity of Fe-doped CeO2 with a higher rate (∼3.9 × 10-3 min-1) among all other materials. Moreover, kinetic studies also revealed the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while removing 2-CP in the exposure of indoor light with a Fe-doped CeO2 photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+ core levels in doped CeO2. Using the agar well-diffusion method, the antifungal activity was assessed against the fungus M. fructicola and F. oxysporum. Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-doped CeO2 nanoparticles have outstanding antifungal properties.

5.
Chem Biodivers ; 20(4): e202200721, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36935351

RESUMO

Some issues, such as their obscure fate or low survival rate into the body during stem cell therapy, should be addressed to boost efficiency. Nanotechnology offers a suitable solution to combat such limitations. Carbon quantum dots (CQDs) are carbon-based nanomaterials and may be used as multi-purpose compounds in stem cell therapy. CQDs are excellent choices for stem cell labeling thanks to their special features such as optical properties and good biocompatibility. Besides, they can modulate the biological function of stem cells, such as their proliferation, homing ability, and differentiation properties. Considering the charismatic feature of CQDs and their broad unique effect on stem cells, the current review aims to summarize the advancements in this field. Hence, we first focused on CQDs synthesis and their applications. In the next section, the stem cell categories will be discussed, and the final part is dedicated to the recent research evaluating the impact of CQDs on stem cell therapy.


Assuntos
Pontos Quânticos , Carbono , Terapia Baseada em Transplante de Células e Tecidos
6.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36748791

RESUMO

Myrtaceae is one of the most important plants families, being regarded as the eighth largest flowering plant family. It includes many genera of utmost ecological and economical importance distributed all over the world. This review aimed to report the latest studies on this family focusing on certain widely used plants including Eucalyptus sp., Eugenia sp. (Eugenia uniflora, Eugenia sulcata), Syzygium sp. (Syzygium aromaticum and Syzygium cumini), Psidium sp., Pimenta dioica, Myrtus sp. (Myrtus communis), Myrciaria sp. and Melaleuca alternifolia. The extraction of bioactive compounds has been evolving through the optimization of conventional methods and the use of emerging technologies. Supercritical CO2 was applied for essential oils and ultrasound for polyphenols leading to extracts and essential oils rich in bioactive compounds. Advances in the field of encapsulation and delivery systems showed promising results in the production of stable essential oils nanoemulsions and liposomes and the production of plant extracts in the form of nanoparticles. Moreover, a significant increase in the number of patents was noticed especially the application of Myrtaceae extracts in the pharrmacuetucal field. The applications of ceratin plants (Pimenta dioica, Melaleuca alternifolia, Syzygium aromaticum essential oils or Myrciaria cauliflora peel extract) in food area (either as a free or encapsulated form) also showed interesting results in limiting microbial spoilage of fresh meat and fish, slowing oxidative degradation in meat products, and inhibiting aflatoxin production in maize. Despite the massive literature on Myrtaceae plants, advances are still necessary to optimize the extraction with environmentally friendly technologies and carry out risk assessment studies should be accomplished to harness the full potential in food, industrial and pharmaceutical applications.

7.
Int J Biol Macromol ; 230: 123161, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610574

RESUMO

Cancer is a complicated, adaptable, and heterogeneous disease caused by a wide variety of genetic changes that might impair ability of cells to function normally. The majority of the tumors can only be shrunk using conventional oncology therapies like chemotherapy, radiation, and surgical resection, and the tumor often recurs. The inability of conventional cancer therapies to completely destroy the Cancer Stem Cells (CSCs) that otherwise lead to therapy resistance is thus addressed by therapeutic approaches that concentrate on targeting CSCs and their micro-environmental niche. In this review, we summarize approaches that are used for the development of fusion proteins and their therapeutic applications for treating cancer. The main purpose of making advancements towards the fusion technology instead of using conventional treatment methods is to achieve a prolonged half-life of the therapeutic drugs. The fusion of drugs to the immune response enhancing cytokines or the fusion of antibody and cytokines not only increases half-life but also increase the stability of the anti-tumor drug. Several molecules including different fragments of antibodies, cytokines, Human Serum Albumin, transferrin, XTEN polymers, Elastin-like polypeptides (ELPs) can be employed as a fusion partner and the resulting fusion proteins are reported to show enhanced anti-tumor response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Polímeros/química , Neoplasias/tratamento farmacológico , Tecnologia , Citocinas
8.
Environ Sci Pollut Res Int ; 29(58): 86933-86953, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279055

RESUMO

Continuous incorporation of microplastics (MPs) and their fragmented residues into the ecosystem has sparked significant scientific apprehensions about persistence, a multitude of sources, and toxicity impacts on human health and aquatic entities. Overcoming this multifaceted hazard necessitates the development of novel techniques with robust efficiencies to eliminate microplastics from the environmental compartments. Coagulation, flocculation, and membrane filtration are non-destructive techniques but necessitate extra steps for microplastic degradation, whereas biological means have been confirmed less efficient (less than 15% degradation). Recent reports have emphasized advanced oxidation processes (AOPs) as practical treatment alternatives, representing superior catalytic efficacy for microplastic degradation (≈30-95%). Nevertheless, additional investigations should be carried out to evaluate the performance of AOPs in degrading microplastics under real environmental matrices. Moreover, the detection of transformed metabolites, degradation mechanistic insights, and toxicity bioassays are required to substantiate AOP assumption as feasible remediation substitutes. This review focuses on the source, occurrence, discharge, transportation, and associated paramount health risks of microplastics. Advanced oxidation processes-assisted removal of microplastics from the aqueous matrices is thoroughly vetted with up-to-date findings. Factors affecting the degradation of MPs have been discussed in detail. In addition to the generalized mechanistic insights into photocatalytic degradation, the risk assessment of aging intermediates is also comprehended. Finally, the review was concluded by emphasizing current research gaps and incoming research tendencies to provide guidelines for efficiently addressing microplastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água
9.
Environ Res ; 215(Pt 3): 114398, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174757

RESUMO

Industrial wastewater is causing serious health problems due to presence of large concentrations of toxic metals. Removal of these metals is still a big challenge using pristine natural biopolymers due to their low surface area, water solubility, and poor recovery. Developing biopolymeric composites with other materials has attained attention because they possess a high surface area and structural porosity, high reactivity, and less water solubility. In simple words, biopolymeric nanohybrids have great adsorption capacity for heavy metals. Biopolymeric materials are abundant, low cost, biodegradable, and possess different functional moieties (carboxyl, amine, hydroxyl, and carbonyl) which play a vital role to adsorb metal ions through various inter-linkages (i.e., electrostatic, hydrogen bonding, ion exchange, chelation, etc.). Biopolymeric nanohybrids have been proven a potent tool in environmental remediation such as the abatement of heavy metal ions from polluted water. Herein, we have reported the adsorption potential of various biopolymers (cellulose, chitosan, pectin, gelatin, and silk proteins) for the removal of heavy metals. This review discusses the suitability of biopolymeric nanohybrids as an adsorbent for heavy metals, their synthesis, modification, adsorption potential, and adsorption mechanism along with best fitted thermodynamic and kinetic models. The influence of pH, contact time, and adsorbent dose on adsorption potential has also been discussed in detail. Lastly, the challenges, research gaps and recommendations have been presented. This review concludes that biopolymers in combination with other materials such as metal-based nanoparticles, clay, and carbon-based materials are excellent materials to remove metallic ions from wastewater. Significant adsorption of heavy metals was obtained at a moderate pH (5-6). Contact time and adsorbent dose also affect the adsorption of heavy metals in certain ways. The Pseudo-first order model fits the data for the initial period of the first step of the reaction. Kinetic studies of different adsorption processes of various biopolymeric nanohybrids described that for majority of bionanohybrids, Pseudo-second order fitted the experimental data very well. Functionalized biopolymeric nanohybrids being biodegradable, environment friendly, cost-effective materials have great potential to adsorb heavy metal ions. These may be the future materials for environmental remediation.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Adsorção , Aminas , Biopolímeros , Carbono , Celulose , Argila , Gelatina , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados/análise , Pectinas , Seda , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
10.
Environ Pollut ; 309: 119805, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868473

RESUMO

Volatile organic compounds (VOCs) represent a considerable threat to humans and ecosystems. Strategic remediation techniques for the abatement of VOCs are immensely important and immediately needed. Given a unique set of optical, mechanical, electrical, and thermal characteristics, inimitable surface functionalities, porous structure, and substantial specific surface area, graphene and derived nanohybrid composites have emerged as exciting candidates for abating environmental pollutants through photocatalytic degradation and adsorptive removal. Graphene oxide (GO) and reduced graphene oxide (rGO) containing oxygenated function entities, i.e., carbonyl, hydroxyl, and carboxylic groups, provide anchor and dispersibility of their surface photocatalytic nanoscale particles and adsorptive sites for VOCs. Therefore, it is meaningful to recapitulate current state-of-the-art research advancements in graphene-derived nanostructures as prospective platforms for VOCs degradation. Considering this necessity, this work provides a comprehensive and valuable insight into research progress on applying graphene-based nanohybrid composites for adsorptive and photocatalytic abatement of VOCs in the aqueous media. First, we present a portrayal of graphene-based nanohybrid based on their structural attributes (i.e., pore size, specific surface area, and other surface features to adsorb VOCs) and structure-assisted performance for VOCs abatement by graphene-based nanocomposites. The adsorptive and photocatalytic potentialities of graphene-based nanohybrids for VOCs are discussed with suitable examples. In addition to regeneration, reusability, and environmental toxicity aspects, the challenges and possible future directions of graphene-based nanostructures are also outlined towards the end of the review to promote large-scale applications of this fascinating technology.


Assuntos
Grafite , Nanocompostos , Compostos Orgânicos Voláteis , Ecossistema , Grafite/química , Humanos , Nanocompostos/química , Porosidade , Compostos Orgânicos Voláteis/química
11.
Chemosphere ; 303(Pt 1): 134923, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568211

RESUMO

A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanocompostos , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Antibacterianos , Humanos , Polímeros
12.
Environ Pollut ; 306: 119373, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500715

RESUMO

The widespread occurrence and ubiquitous distribution of estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) in our water matrices, is an issue of global concern. Public and regulatory authorities are concerned and placing joint efforts to eliminate estrogens and related environmentally hazardous compounds, due to their toxic influences on the environmental matrices, ecology, and human health, even at low concentrations. However, most of the available literature is focused on the occurrence of estrogens in different water environments with limited treatment options. Thus, a detailed review to fully cover the several treatment processes is needed. This review comprehensively and comparatively discusses many physical, chemical, and biological-based treatments to eliminate natural estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) and related synthetic estrogens, e.g., 17α-ethinylestradiol (EE2) and other related hazardous compounds. The covered techniques include adsorption, nanofiltration, ultrafiltration, ultrasonication, photocatalysis of estrogenic compounds, Fenton, Fenton-like and photo-Fenton degradation of estrogenic compounds, electro-Fenton degradation of estrogenic compounds, ozonation, and biological methods for the removal of estrogenic compounds are thoroughly discussed with suitable examples. The studies revealed that treatment plants based on chemical and biological approaches are cost-friendly for removing estrogenic pollutants. Further, there is a need to properly monitor and disposal of the usage of estrogenic drugs in humans and animals. Additional studies are required to explore a robust and more advanced oxidation treatment strategy that can contribute effectively to industrial-scale applications. This review may assist future investigations, monitoring, and removing estrogenic compounds from various environmental matrices. In concluding remarks, a way forward and future perspectives focusing on bridging knowledge gaps in estrogenic compounds removal are also proposed.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Estradiol/metabolismo , Estriol/análise , Estrogênios/análise , Estrona/análise , Eliminação de Resíduos Líquidos/métodos , Água , Poluentes Químicos da Água/análise , Recursos Hídricos
13.
Chemosphere ; 294: 133772, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35104552

RESUMO

Rapid industrial development, vehicles, domestic activities and mishandling of garbage are the main sources of pollutants, which are destroying the atmosphere. There is a need to continuously monitor these pollutants for the safety of the environment and human beings. Conventional instruments for monitoring of toxic gases are expensive, bigger in size and time-consuming. Hybrid materials containing organic and inorganic components are considered potential candidates for diverse applications, including gas sensing. Gas sensors convert the information regarding the analyte into signals. Various polymeric/inorganic nanohybrids have been used for the sensing of toxic gases. Composites of different polymeric materials like polyaniline (PANI), poly (4-styrene sulfonate) (PSS), poly (3,4-ethylene dioxythiophene) (PEDOT), etc. with various metal/metal oxide nanoparticles have been reported as sensing materials for gas sensors because of their unique redox features, conductivity and facile operation at room temperature. Polymeric nanohybrids showed better performance because of the larger surface area of nanohybrids and the synergistic effect between polymeric and inorganic materials. This review article focuses on the recent developments of emerging polymeric/inorganic nanohybrids for sensing various toxic gases including ammonia, hydrogen, nitrogen dioxide, carbon oxides and liquefied petroleum gas. Advantages, disadvantages, operating conditions and prospects of hybrid composites have also been discussed.


Assuntos
Gases , Nanopartículas Metálicas , Amônia , Humanos , Óxidos , Polímeros
14.
Biomolecules ; 12(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35053231

RESUMO

The genus Mimosa belongs to the Fabaceae family and comprises almost 400 species of herbs, shrubs and ornamental trees. The genus Mimosa is found all over the tropics and subtropics of Asia, Africa, South America, North America and Australia. Traditionally, this genus has been popular for the treatment of jaundice, diarrhea, fever, toothache, wound healing, asthma, leprosy, vaginal and urinary complaints, skin diseases, piles, gastrointestinal disorders, small pox, hepatitis, tumor, HIV, ulcers and ringworm. The review covered literature available from 1959 to 2020 collected from books, scientific journals and electronic searches, such as Science Direct, Web of Science and Google scholar. Various keywords, such as Mimosa, secondary metabolites, medicines, phytochemicals and pharmacological values, were used for the data search. The Mimosa species are acknowledged to be an essential source of secondary metabolites with a wide-ranging biological functions, and up until now, 145 compounds have been isolated from this genus. Pharmacological studies showed that isolated compounds possess significant potential, such as antiprotozoal, antimicrobial, antiviral, antioxidant, and antiproliferative as well as cytotoxic activities. Alkaloids, chalcones, flavonoids, indoles, terpenes, terpenoids, saponins, steroids, amino acids, glycosides, flavanols, phenols, lignoids, polysaccharides, lignins, salts and fatty esters have been isolated from this genus. This review focused on the medicinal aspects of the Mimosa species and may provide a comprehensive understanding of the prospective of this genus as a foundation of medicine, supplement and nourishment. The plants of this genus could be a potential source of medicines in the near future.


Assuntos
Mimosa , Etnofarmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Estudos Prospectivos
15.
Biosens Bioelectron ; 199: 113867, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890884

RESUMO

Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanocompostos , Nanotubos de Carbono , Oligonucleotídeos
16.
Chemosphere ; 287(Pt 3): 132319, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826950

RESUMO

Effective methods for removing harmful metals from wastewater have had a huge impact on reducing freshwater scarcity. Because of its excellent removal effectiveness, simplicity and low cost at ambient conditions, adsorption is one of the most promising purifying approaches. MXene-based nanoarchitectures have proven to be effective adsorbents in a variety of harmful metal removal applications. This owes from the distinctive features such as, hydrophilicity, high surface area, electron-richness, great adsorption capacity, and activated metallic hydroxide sites of MXenes. Given the rapid advancement in the design and synthesis of MXene nanoarchitectures for water treatment, prompt updates on this research area are needed that focus on removal of toxic metal, such as production routes and characterization techniques for the advantages, merits and limitations of MXenes for toxic metal adsorption. This is in addition to the fundamentals and the adsorption mechanism tailored by the shape and composition of MXene based on some representative paradigms. Finally, the limits of MXenes are highlighted, as well as their potential future research directions for wastewater treatment. This manuscript may initiate researchers to improve unique MXene-based nanostructures with distinct compositions, shapes, and physiochemical merits for effective removal of toxic metals from wastewater.


Assuntos
Poluentes Ambientais , Nanoestruturas , Purificação da Água , Adsorção , Águas Residuárias
17.
Chemosphere ; 291(Pt 1): 132820, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34762881

RESUMO

Fabricating new biosensing constructs with high selectivity and sensitivity is the most needed environmental detection tool. In this context, several nanostructured materials have been envisaged to construct biosensors to achieve superior selectivity and sensitivity. Among them, MXene is regarded as the most promising to develop biosensors due to its fascinating attributes, like high surface area, excellent thermal resistance, good hydrophilicity, unique layered topology, high electrical conductivity, and environmentally-friendlier properties. MXenes-based materials have emerged as a prospective for catalysis, energy storage, electronics, and environmental sensing and remediation applications thanks to the above-mentioned exceptional characteristics. This review elaborates on the contemporary and state-of-the-art advancements in MXene-based electrochemical and biosensing tools to detect toxic elements, pharmaceutically active residues, and pesticide contaminants from environmental matrices. At first, the surface functionalization/modification of MXenes is discussed. Afterwards, a particular focus has been devoted to exploiting MXene to construct electrochemical (bio) sensors to detect various environmentally-related pollutants. Lastly, current challenges in this arena accompanied by potential solutions and directions are also outlined.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Nanoestruturas , Praguicidas , Estudos Prospectivos
18.
J Basic Microbiol ; 62(9): 1143-1155, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34724237

RESUMO

Naphthamides have pharmacological potential as they express strong activities against microorganisms. The commercially available naphthoyl chloride and 4-bromoaniline were condensed in dry dichloromethane (DCM) in the presence of Et3 N to form N-(4-bromophenyl)-1-naphthamide (86%) (3). Using a Pd(0) catalyzed Suzuki-Miyaura Cross-Coupling reaction of (3) and various boronic acids, a series of N-([1,1'-biaryl]-4-yl)-1-naphthamide derivatives (4a-h) were synthesized in moderate to good yields. The synthesized derivatives were evaluated for cytotoxicity haemolytic assay and biofilm inhibition activity through in silico and in vitro studies. Molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity risk, and other cheminformatics predict synthesized molecules as biologically active moieties, further validated through in vitro studies in which compounds (4c) and (4f) showed significant haemolytic activity whereas (4e) exhibited an efficient biofilm inhibition activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. When forming biofilms, bacteria become resistant to various antimicrobial treatments. Currently, research is focused on the development of agents that inhibit biofilm formation, thus the present work is valuable for preventing future drug resistance.


Assuntos
Biofilmes , Quimioinformática , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
19.
Chemosphere ; 286(Pt 2): 131710, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34343918

RESUMO

Covalent organic frameworks (COFs) are an emergent group of crystalline porous materials that have gained incredible interest in recent years. With foreseeable controllable functionalities and structural configurations, the constructions and catalytic properties of these organic polymeric materials can be controlled to fabricate targeted materials. The specified monomer linkers and pre-designed architecture of COFs facilitate the post-synthetic modifications for introducing novel functions and useful properties. By virtue of inherent porosity, robust framework, well-ordered geometry, functionality, higher stability, and amenability to functionalization, COFs and COFs-based composites are regarded as prospective nanomaterials for environmental clean-up and remediation. This report spotlights the state-of-the-art advances and progress in COFs-based materials to efficiently mitigate pharmaceutical-based environmental pollutants from aqueous solutions. Synthesis approaches, structure, functionalization, and sustainability aspects of COFs are discussed. Moreover, the adsorptive and photocatalytic potential of COFs and their derived nanocomposites for removal and degradation of pharmaceuticals are thoroughly vetted. In addition to deciphering adsorption mechanism/isotherms, the stability, regeneratability and reproducibility are also delineated. Lastly, the outcomes are summed up, and new directions are proposed to widen the promise of COF-based smart materials in diverse fields.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Preparações Farmacêuticas , Materiais Inteligentes , Estudos Prospectivos , Reprodutibilidade dos Testes
20.
Crit Rev Food Sci Nutr ; 62(14): 3913-3929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33427482

RESUMO

Naturally occurring plant-based gums and their engineered bio-nanostructures have gained an immense essence of excellence in several industrial, biotechnological, and biomedical sectors of the modern world. Gums derived from bio-renewable resources that follow green chemistry principles are considered green macromolecules with unique structural and functional attributes. For instance, gum mostly obtained as exudates are bio-renewable, bio-degradable, bio-compatible, sustainable, overall cost-effective, and nontoxic. Gum exudates also offer tunable attributes that play a crucial role in engineering bio-nanostructures of interest for several bio- and non-bio applications, e.g., food-related items, therapeutic molecules, sustained and controlled delivery cues, bio-sensing constructs, and so on. With particular reference to plant gum exudates, this review focuses on applied perspectives of various gums, i.e., gum Arabic, gum albizzia, gum karaya, gum tragacanth, and gum kondagogu. After a brief introduction with problem statement and opportunities, structural and physicochemical attributes of plant-based natural gums are presented. Following that, considerable stress is given to green synthesis and stabilization of gum-based bio-nanostructures. The final part of the review focuses on the bio- and non-bio related applications of various types of gums polysaccharides-oriented bio-nanostructures.


Assuntos
Nanoestruturas , Tragacanto , Goma Arábica/química , Gomas Vegetais , Polissacarídeos , Tragacanto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA