Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS One ; 18(10): e0292483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796964

RESUMO

Prostate cancer is a leading cause of cancer-related deaths in men in the United States. Although treatable when detected early, prostate cancer commonly transitions to an aggressive castration-resistant metastatic state. While taxane chemotherapeutics such as docetaxel are mainstay treatment options for prostate cancer, taxane resistance often develops. Fatty acid binding protein 5 (FABP5) is an intracellular lipid chaperone that is upregulated in advanced prostate cancer and is implicated as a key driver of its progression. The recent demonstration that FABP5 inhibitors produce synergistic inhibition of tumor growth when combined with taxane chemotherapeutics highlights the possibility that FABP5 may regulate other features of taxane function, including resistance. Employing taxane-resistant DU145-TXR cells and a combination of cytotoxicity, apoptosis, and cell cycle assays, our findings demonstrate that FABP5 knockdown sensitizes the cells to docetaxel. In contrast, docetaxel potency was unaffected by FABP5 knockdown in taxane-sensitive DU145 cells. Taxane-resistance in DU145-TXR cells stems from upregulation of the P-glycoprotein ATP binding cassette subfamily B member 1 (ABCB1). Expression analyses and functional assays confirmed that FABP5 knockdown in DU145-TXR cells markedly reduced ABCB1 expression and activity, respectively. Our study demonstrates a potential new function for FABP5 in regulating taxane sensitivity and the expression of a major P-glycoprotein efflux pump in prostate cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Taxoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a Ácido Graxo/genética
2.
J Chem Theory Comput ; 19(21): 7934-7945, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37831619

RESUMO

Virtual screening (VS) involves generation of poses for a library of ligands and ranking using simplified energy functions and limited flexibility. Top-scored poses are used to rank and prioritize ligands. Here, we adapt the reservoir replica exchange molecular dynamics (res-REMD) method to rerank poses generated through VS. REMD simulations are carried out but with occasional Monte Carlo jumps to alternate VS-generated poses using a Metropolis criterion. The simulations converge within 10 ns for all systems, generating populations of alternate poses in the context of fully flexible ligand and protein side chains. The protocol is applied to four model protein-ligand complexes, where DOCK resulted in two successes and two scoring failures. In all four systems, the most populated cluster from the final ensemble exhibits high similarity to the crystallographic pose with ligand RMSD values under 2.0 Å. Both DOCK failures were rescued. For one DOCK success, the protocol identified the correct pose but also sampled an alternate pose at equal probability. Opportunities for future improvements and extensions are discussed.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligação Proteica , Simulação de Acoplamento Molecular , Ligantes , Proteínas/química
3.
J Chem Inf Model ; 63(18): 5803-5822, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37698425

RESUMO

Structure-based methods that employ principles of de novo design can be used to construct small organic molecules from scratch using pre-existing fragment libraries to sample chemical space and are an important class of computational algorithms for drug-lead discovery. Here, we present a powerful new design method for DOCK6 that employs a Descriptor-Driven De Novo strategy (termed D3N) in which user-defined cheminformatics descriptors (and their target ranges) are calculated at each layer of growth using the open-source toolkit RDKit. The objective is to tailor ligand growth toward desirable regions of chemical space. The approach was extensively validated through: (1) comparison of cheminformatics descriptors computed using the new DOCK6/RDKit interface versus the standard Python/RDKit installation, (2) examination of descriptor distributions generated using D3N growth under different conditions (target ranges and environments), and (3) construction of ligands with very tight (pinpoint) descriptor ranges using clinically relevant compounds as a reference. Our testing confirms that the new DOCK6/RDKit integration is robust, showcases how the new D3N routines can be used to direct sampling around user-defined chemical spaces, and highlights the utility of on-the-fly descriptor calculations for ligand design to important drug targets.


Assuntos
Algoritmos , Quimioinformática , Ligantes , Sistemas de Liberação de Medicamentos , Descoberta de Drogas
4.
Bioorg Chem ; 139: 106747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531819

RESUMO

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Assuntos
Ceramidas , Ceramidase Neutra , Domínio Catalítico , Ceramidas/química , Ceramidase Neutra/antagonistas & inibidores , Esfingosina/química
5.
Chem Biol Drug Des ; 101(1): 87-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029027

RESUMO

Human epidermal growth factor receptor 2 (HER2) is an oncogenic driver and key therapeutic target for human cancers. Current therapies targeting HER2 are primarily based on overexpression of the wild-type form of HER2. However, kinase domain mutations have been identified that can increase the activity of HER2 even when expressed at basal levels. Using purified enzymes, we confirmed the hyperactivity of two HER2 mutants (D769Y and P780insGSP). To identify small molecule inhibitors against these cancer-associated variants, we used a combined approach consisting of biochemical testing, similarity-based searching, and in silico modeling. These approaches resulted in the identification of a candidate molecule that inhibits mutant forms of HER2 in vitro and in cell-based assays. Our structural model predicts that the compound takes advantage of water-mediated interactions in the HER2 kinase binding pocket.


Assuntos
Neoplasias , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Ligação Proteica , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
6.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201488

RESUMO

Resistance to standard of care taxane and androgen deprivation therapy (ADT) causes the vast majority of prostate cancer (PC) deaths worldwide. We have developed RapidCaP, an autochthonous genetically engineered mouse model of PC. It is driven by the loss of PTEN and p53, the most common driver events in PC patients with life-threatening diseases. As in human ADT, surgical castration of RapidCaP animals invariably results in disease relapse and death from the metastatic disease burden. Fatty Acid Binding Proteins (FABPs) are a large family of signaling lipid carriers. They have been suggested as drivers of multiple cancer types. Here we combine analysis of primary cancer cells from RapidCaP (RCaP cells) with large-scale patient datasets to show that among the 10 FABP paralogs, FABP5 is the PC-relevant target. Next, we show that RCaP cells are uniquely insensitive to both ADT and taxane treatment compared to a panel of human PC cell lines. Yet, they share an exquisite sensitivity to the small-molecule FABP5 inhibitor SBFI-103. We show that SBFI-103 is well tolerated and can strongly eliminate RCaP tumor cells in vivo. This provides a pre-clinical platform to fight incurable PC and suggests an important role for FABP5 in PTEN-deficient PC.

7.
J Comput Chem ; 43(29): 1942-1963, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36073674

RESUMO

As a complement to virtual screening, de novo design of small molecules is an alternative approach for identifying potential drug candidates. Here, we present a new 3D genetic algorithm to evolve molecules through breeding, mutation, fitness pressure, and selection. The method, termed DOCK_GA, builds upon and leverages powerful sampling, scoring, and searching routines previously implemented into DOCK6. Three primary experiments were used during development: Single-molecule evolution evaluated three selection methods (elitism, tournament, and roulette), in four clinically relevant systems, in terms of mutation type and crossover success, chemical properties, ensemble diversity, and fitness convergence, among others. Large scale benchmarking assessed performance across 651 different protein-ligand systems. Ensemble-based evolution demonstrated using multiple inhibitors simultaneously to seed growth in a SARS-CoV-2 target. Key takeaways include: (1) The algorithm is robust as demonstrated by the successful evolution of molecules across a large diverse dataset. (2) Users have flexibility with regards to parent input, selection method, fitness function, and molecular descriptors. (3) The program is straightforward to run and only requires a single executable and input file at run-time. (4) The elitism selection method yields more tightly clustered molecules in terms of 2D/3D similarity, with more favorable fitness, followed by tournament and roulette.


Assuntos
COVID-19 , Desenho de Fármacos , Algoritmos , Evolução Molecular , Humanos , Ligantes , SARS-CoV-2
8.
Nat Commun ; 12(1): 5885, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620873

RESUMO

Pathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3ß-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3ß-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1's substrate specificity and enable the rational design of antifungal agents targeting Sgl1.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos , Domínio Catalítico , Criptococose , Cryptococcus neoformans/genética , Cristalografia por Raios X , Modelos Animais de Doenças , Descoberta de Drogas , Ergosterol , Feminino , Proteínas Fúngicas/genética , Glucosidases/química , Glucosidases/efeitos dos fármacos , Glucosidases/genética , Ensaios de Triagem em Larga Escala , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular
9.
J Am Chem Soc ; 143(30): 11349-11360, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34270232

RESUMO

The SARS-CoV-2 coronavirus is an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell and is the primary target of neutralizing antibodies. The receptor binding domain (RBD) of the spike samples multiple conformations in a compromise between evading immune recognition and searching for the host-cell surface receptor. Using atomistic simulations of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we map the free energy landscape for RBD opening and identify interactions in an allosteric pocket that influence RBD dynamics. The results provide an explanation for experimental observation of increased antibody binding for a clinical variant with a substitution in this pocket. Our results also suggest the possibility of allosteric targeting of the RBD equilibrium to favor open states via binding of small molecules to the hinge pocket. In addition to potential value as experimental probes to quantify RBD conformational heterogeneity, small molecules that modulate the RBD equilibrium could help explore the relationship between RBD opening and S1 shedding.


Assuntos
SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Sítio Alostérico , Simulação de Dinâmica Molecular , Domínios Proteicos , Termodinâmica
10.
Biochemistry ; 59(39): 3709-3724, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32876433

RESUMO

The World Health Organization has designated Zika virus (ZIKV) as a dangerous, mosquito-borne pathogen that can cause severe developmental defects. The primary goal of this work was identification of small molecules as potential ZIKV inhibitors that target the viral envelope glycoprotein (ZIKV E) involved in membrane fusion and viral entry. A homology model of ZIKV E containing the small molecule ß-octyl glucoside (BOG) was constructed, on the basis of an analogous X-ray structure from dengue virus, and >4 million commercially available compounds were computationally screened using the program DOCK6. A key feature of the screen involved the use of similarity-based scoring to identify inhibitor candidates that make similar interaction energy patterns (molecular footprints) as the BOG reference. Fifty-three prioritized compounds underwent experimental testing using cytotoxicity, cell viability, and tissue culture infectious dose 50% (TCID50) assays. Encouragingly, relative to a known control (NITD008), six compounds were active in both the cell viability assay and the TCID50 infectivity assay, and they showed activity in a third caspase activity assay. In particular, compounds 8 and 15 (tested at 25 µM) and compound 43 (tested at 10 µM) appeared to provide significant protection to infected cells, indicative of anti-ZIKV activity. Overall, the study highlights how similarity-based scoring can be leveraged to computationally identify potential ZIKV E inhibitors that mimic a known reference (in this case BOG), and the experimentally verified hits provide a strong starting point for further refinement and optimization efforts.


Assuntos
Antivirais/química , Antivirais/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Zika virus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
11.
Biochemistry ; 58(42): 4304-4316, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31539229

RESUMO

Fatty acid binding protein 5 (FABP5) is a promising target for development of inhibitors to help control pain and inflammation. In this work, computer-based docking (DOCK6 program) was employed to screen ∼2 M commercially available compounds to FABP5 based on an X-ray structure complexed with the small molecule inhibitor SBFI-26 previously identified by our group (also through virtual screening). The goal was discovery of additional chemotypes. The screen resulted in the purchase of 78 candidates, which led to the identification of a new inhibitor scaffold (STK-0) with micromolar affinity and apparent selectivity for FABP5 over FABP3. A second similarity-based screen resulted in three additional hits (STK-15, STK-21, STK-22) from which preliminary SAR could be derived. Notably, STK-15 showed comparable activity to the SBFI-26 reference under the same assay conditions (1.40 vs 0.86 µM). Additional molecular dynamics simulations, free energy calculations, and structural analysis (starting from DOCK-generated poses) revealed that R enantiomers (dihydropyrrole scaffold) of STK-15 and STK-22 have a more optimal composition of functional groups to facilitate additional H-bonds with Arg109 of FABP5. This observation suggests enantiomerically pure compounds could show enhanced activity. Overall, our study highlights the utility of using similarity-based screening methods to discover new inhibitor chemotypes, and the identified FABP5 hits provide a strong starting point for future efforts geared to improve activity.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Cristalografia por Raios X , Ciclobutanos/química , Ciclobutanos/farmacologia , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Proteína 3 Ligante de Ácido Graxo/antagonistas & inibidores , Proteína 3 Ligante de Ácido Graxo/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Interface Usuário-Computador
12.
PLoS One ; 14(6): e0218619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237895

RESUMO

(-)-Incarvillateine (INCA) is a natural product that has garnered attention due to its purported analgesic effects and historical use as a pain reliever in China. α-Truxillic acid monoesters (TAMEs) constitute a class of inhibitors targeting fatty acid binding protein 5 (FABP5), whose inhibition produces analgesia in animal models. The structural similarity between INCA and TAMEs motivated us to assess whether INCA exerts its antinociceptive effects via FABP inhibition. We found that, in contrast to TAMEs, INCA did not exhibit meaningful binding affinities toward four human FABP isoforms (FABP3, FABP4, FABP5 and FABP7) in vitro. INCA-TAME, a putative monoester metabolite of INCA that closely resembles TAMEs also lacked affinity for FABPs. Administration of INCA to mice produced potent antinociceptive effects while INCA-TAME was without effect. Surprisingly, INCA also potently suppressed locomotor activity at the same dose that produces antinociception. The motor suppressive effects of INCA were reversed by the adenosine A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine. Collectively, our results indicate that INCA and INCA-TAME do not inhibit FABPs and that INCA exerts potent antinociceptive and motor suppressive effects at equivalent doses. Therefore, the observed antinociceptive effects of INCA should be interpreted with caution.


Assuntos
Alcaloides/farmacologia , Analgésicos/farmacologia , Locomoção/efeitos dos fármacos , Monoterpenos/farmacologia , Nociceptividade/efeitos dos fármacos , Receptores A2 de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Masculino , Camundongos , Ligação Proteica , Teobromina/análogos & derivados , Teobromina/farmacologia
13.
Sci Rep ; 9(1): 7588, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110286

RESUMO

The increasing use of medical marijuana highlights the importance of developing a better understanding of cannabinoid metabolism. Phytocannabinoids, including ∆9-tetrahydrocannabinol (THC), are metabolized and inactivated by cytochrome P450 enzymes primarily within the liver. The lipophilic nature of cannabinoids necessitates mechanism(s) to facilitate their intracellular transport to metabolic enzymes. Here, we test the central hypothesis that liver-type fatty acid binding protein (FABP1) mediates phytocannabinoid transport and subsequent inactivation. Using X-ray crystallography, molecular modeling, and in vitro binding approaches we demonstrate that FABP1 accommodates one molecule of THC within its ligand binding pocket. Consistent with its role as a THC carrier, biotransformation of THC was reduced in primary hepatocytes obtained from FABP1-knockout (FABP1-KO) mice. Compared to their wild-type littermates, administration of THC to male and female FABP1-KO mice potentiated the physiological and behavioral effects of THC. The stark pharmacodynamic differences were confirmed upon pharmacokinetic analyses which revealed that FABP1-KO mice exhibit reduced rates of THC biotransformation. Collectively, these data position FABP1 as a hepatic THC transport protein and a critical mediator of cannabinoid inactivation. Since commonly used medications bind to FABP1 with comparable affinities to THC, our results further suggest that FABP1 could serve a previously unrecognized site of drug-drug interactions.


Assuntos
Dronabinol/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Animais , Sítios de Ligação , Biotransformação , Células Cultivadas , Cristalografia por Raios X , Dronabinol/administração & dosagem , Proteínas de Ligação a Ácido Graxo/química , Feminino , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares
14.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092576

RESUMO

A key step in the Ebola virus (EBOV) replication cycle involves conformational changes in viral glycoprotein 2 (GP2) which facilitate host-viral membrane fusion and subsequent release of the viral genome. Ebola GP2 plays a critical role in virus entry and has similarities in mechanism and structure to the HIV gp41 protein for which inhibitors have been successfully developed. In this work, a putative binding pocket for the C-terminal heptad repeat in the N-terminal heptad repeat trimer was targeted for identification of small molecules that arrest EBOV-host membrane fusion. Two computational structure-based virtual screens of ∼1.7 M compounds were performed (DOCK program) against a GP2 five-helix bundle, resulting in 165 commercially available compounds purchased for experimental testing. Based on assessment of inhibitory activity, cytotoxicity, and target specificity, four promising candidates emerged with 50% inhibitory concentration values in the 3 to 26 µM range. Molecular dynamics simulations of the two most potent candidates in their DOCK-predicted binding poses indicate that the majority of favorable interactions involve seven highly conserved residues that can be used to guide further inhibitor development and refinement targeting EBOV.IMPORTANCE The most recent Ebola virus disease outbreak, from 2014 to 2016, resulted in approximately 28,000 individuals becoming infected, which led to over 12,000 causalities worldwide. The particularly high pathogenicity of the virus makes paramount the identification and development of promising lead compounds to serve as inhibitors of Ebola infection. To limit viral load, the virus-host membrane fusion event can be targeted through the inhibition of the class I fusion glycoprotein of Ebolavirus In the current work, several promising small-molecule inhibitors that target the glycoprotein GP2 were identified through systematic application of structure-based computational and experimental drug design procedures.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Mimetismo Molecular , Proteínas do Envelope Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
15.
Biochemistry ; 57(32): 4934-4951, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29975516

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a validated breast cancer drug target for small molecule inhibitors that target the ATP-binding pocket of the kinase domain. In this work, a large-scale virtual screen was performed to a novel homology model of HER2, in a hypothesized "fully active" state, that considered water-mediated interactions during the prioritization of compounds for experimental testing. This screen led to the identification of a new inhibitor with micro molar affinity and potency ( Kd = 7.0 µM, IC50 = 4.6 µM). Accompanying molecular dynamics simulations showed that inhibitor binding likely involves water coordination through an important water-mediated network previously identified in our laboratory. The predicted binding geometry also showed a remarkable overlap with the crystallographic poses for two previously reported inhibitors of the related Chk1 kinase. Concurrent with the HER2 studies, we developed formalized computational protocols that leverage solvated footprints (per-residue interaction maps that include bridging waters) to identify ligands that can "coordinate" or "displace" key binding site waters. Proof-of-concept screens targeting HIVPR and PARP1 demonstrate that molecules with high footprint overlap can be effectively identified in terms of their coordination or displacement patterns relative to a known reference. Overall, the procedures developed as a result of this study should be useful for researchers targeting HER2 and, more generally, for any protein in which the identification of compounds that exploit binding site waters is desirable.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/química
16.
Eur J Med Chem ; 154: 233-252, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29803996

RESUMO

Fatty acid binding proteins (FABPs) serve as critical modulators of endocannabinoid signaling by facilitating the intracellular transport of anandamide and whose inhibition potentiates anandamide signaling. Our previous work has identified a novel small-molecule FABP inhibitor, α-truxillic acid 1-naphthyl monoester (SB-FI-26, 3) that has shown efficacy as an antinociceptive and anti-inflammatory agent in rodent models. In the present work, we have performed an extensive SAR study on a series of 3-analogs as novel FABP inhibitors based on computer-aided inhibitor drug design and docking analysis, chemical synthesis and biological evaluations. The prediction of binding affinity of these analogs to target FABP3, 5 and 7 isoforms was performed using the AutoDock 4.2 program, using the recently determined co-crystal structures of 3 with FABP5 and FABP7. The compounds with high docking scores were synthesized and evaluated for their activities using a fluorescence displacement assay against FABP3, 5 and 7. During lead optimization, compound 3l emerged as a promising compound with the Ki value of 0.21 µM for FABP 5, 4-fold more potent than 3 (Ki, 0.81 µM). Nine compounds exhibit similar or better binding affinity than 3, including compounds 4b (Ki, 0.55 µM) and 4e (Ki, 0.68 µM). Twelve compounds are selective for FABP5 and 7 with >10 µM Ki values for FABP3, indicating a safe profile to avoid potential cardiotoxicity concerns. Compounds 4f, 4j and 4k showed excellent selectivity for FABP5 and would serve as other new lead compounds. Compound 3a possessed high affinity and high selectivity for FABP7. Compounds with moderate to high affinity for FABP5 displayed antinociceptive effects in mice while compounds with low FABP5 affinity lacked in vivo efficacy. In vivo pain model studies in mice revealed that exceeding hydrophobicity significantly affects the efficacy. Thus, among the compounds with high affinity to FABP5 in vitro, the compounds with moderate hydrophobicity were identified as promising new lead compounds for the next round of optimization, including compounds 4b and 4j. For select cases, computational analysis of the observed SAR, especially the selectivity of new inhibitors to particular FABP isoforms, by comparing docking poses, interaction map, and docking energy scores has provided useful insights.


Assuntos
Analgésicos/farmacologia , Ciclobutanos/farmacologia , Ésteres/farmacologia , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/química , Animais , Desenho Assistido por Computador , Ciclobutanos/síntese química , Ciclobutanos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ésteres/síntese química , Ésteres/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Comput Chem ; 38(30): 2641-2663, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28940386

RESUMO

De novo design can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from-scratch construction of molecules is not limited to compounds in pre-existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X-ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug-like compounds (generic libraries), and (3) application to a challenging protein-protein interface on the viral drug target HIVgp41. The computational testing confirms that the de novo DOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteína gp41 do Envelope de HIV/química , Simulação de Acoplamento Molecular/métodos , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Ligantes , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/química , Ligação Proteica , Conformação Proteica
18.
Biochemistry ; 56(27): 3454-3462, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28632393

RESUMO

Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26-FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.


Assuntos
Analgésicos/metabolismo , Ciclobutanos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Modelos Moleculares , Proteínas Supressoras de Tumor/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Ciclobutanos/química , Ciclobutanos/farmacologia , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Proteína 7 de Ligação a Ácidos Graxos/antagonistas & inibidores , Proteína 7 de Ligação a Ácidos Graxos/química , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Ligantes , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas Recombinantes , Estereoisomerismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
19.
Bioorg Med Chem Lett ; 27(14): 3177-3184, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28558972

RESUMO

The viral protein HIVgp41 is an attractive and validated drug target that proceeds through a sequence of conformational changes crucial for membrane fusion, which facilitates viral entry. Prior work has identified inhibitors that interfere with the formation of a required six-helix bundle, composed of trimeric C-heptad (CHR) and N-heptad (NHR) repeat elements, through blocking association of an outer CHR helix or obstructing formation of the inner NHR trimer itself. In this work, we employed similarity-based scoring to identify and experimentally characterize 113 compounds, related to 2 small-molecule inhibitors recently reported by Allen et al. (Bioorg. Med. Chem Lett.2015, 25 2853-59), proposed to act via the NHR trimer obstruction mechanism. The compounds were first tested in an HIV cell-cell fusion assay with the most promising evaluated in a second, more biologically relevant viral entry assay. Of the candidates, compound #11 emerged as the most promising hit (IC50=37.81µM), as a result of exhibiting activity in both assays with low cytotoxicity, as was similarly seen with the known control peptide inhibitor C34. The compound also showed no inhibition of VSV-G pseudotyped HIV entry compared to a control inhibitor suggesting it was specific for HIVgp41. Molecular dynamics simulations showed the predicted DOCK pose of #11 interacts with HIVgp41 in an energetic fashion (per-residue footprints) similar to the four native NHR residues (IQLT) which candidate inhibitors were intended to mimic.


Assuntos
Desenho de Fármacos , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/química , HIV/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/toxicidade , Humanos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Internalização do Vírus/efeitos dos fármacos
20.
Mol Pain ; 13: 1744806917697007, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326944

RESUMO

Background Fatty-acid-binding proteins (FABPs) are intracellular carriers for endocannabinoids, N-acylethanolamines, and related lipids. Previous work indicates that systemically administered FABP5 inhibitors produce analgesia in models of inflammatory pain. It is currently not known whether FABP inhibitors exert their effects through peripheral or central mechanisms. Here, we examined FABP5 distribution in dorsal root ganglia and spinal cord and examined the analgesic effects of peripherally and centrally administered FABP5 inhibitors. Results Immunofluorescence revealed robust expression of FABP5 in lumbar dorsal root ganglia. FABP5 was distributed in peptidergic calcitonin gene-related peptide-expressing dorsal root ganglia and non-peptidergic isolectin B4-expressing dorsal root ganglia. In addition, the majority of dorsal root ganglia expressing FABP5 also expressed transient receptor potential vanilloid 1 (TRPV1) and peripherin, a marker of nociceptive fibers. Intraplantar administration of FABP5 inhibitors reduced thermal and mechanical hyperalgesia in the complete Freund's adjuvant model of chronic inflammatory pain. In contrast to its robust expression in dorsal root ganglia, FABP5 was sparsely distributed in the lumbar spinal cord and intrathecal administration of FABP inhibitor did not confer analgesic effects. Administration of FABP inhibitor via the intracerebroventricular (i.c.v.) route reduced thermal hyperalgesia. Antagonists of peroxisome proliferator-activated receptor alpha blocked the analgesic effects of peripherally and i.c.v. administered FABP inhibitor while antagonism of cannabinoid receptor 1 blocked the effects of peripheral FABP inhibition and a TRPV1 antagonist blocked the effects of i.c.v. administered inhibitor. Although FABP5 and TRPV1 were co-expressed in the periaqueductal gray region of the brain, which is known to modulate pain, knockdown of FABP5 in the periaqueductal gray using adeno-associated viruses and pharmacological FABP5 inhibition did not produce analgesic effects. Conclusions This study demonstrates that FABP5 is highly expressed in nociceptive dorsal root ganglia neurons and FABP inhibitors exert peripheral and supraspinal analgesic effects. This indicates that peripherally restricted FABP inhibitors may serve as a new class of analgesic and anti-inflammatory agents.


Assuntos
Analgésicos/uso terapêutico , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Hiperalgesia/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Dor/tratamento farmacológico , Nervos Periféricos/metabolismo , Analgésicos/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Ciclobutanos/uso terapêutico , Ácidos Dicarboxílicos/uso terapêutico , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Adjuvante de Freund/toxicidade , Gânglios Espinais/metabolismo , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Dor/complicações , Dor/etiologia , Limiar da Dor/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...