Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26819, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439847

RESUMO

Nitrogen is one of the essential nutrients for the production of agricultural crops, participating in a complex interaction among soil, plant and the atmosphere. Therefore, its monitoring is important both economically and environmentally. The aim of this work was to estimate the leaf nitrogen contents in sugarcane from hyperspectral reflectance data during different vegetative stages of the plant. The assessments were performed from an experiment designed in completely randomized blocks, with increasing nitrogen doses (0, 60, 120 and 180 kg ha-1). The acquisition of the spectral data occurred at different stages of crop development (67, 99, 144, 164, 200, 228, 255 and 313 days after cutting; DAC). In the laboratory, the hyperspectral responses of the leaves and the Leaf Nitrogen Contents (LNC) were obtained. The hyperspectral data and the LNC values were used to generate spectral models employing the technique of Partial Least Squares Regression (PLSR) Analysis, also with the calculation of the spectral bands of greatest relevance, by the Variable Importance in Projection (VIP). In general, the increase in LNC promoted a smaller reflectance in all wavelengths in the visible (400-680 nm). Acceptable models were obtained (R2 > 0.70 and RMSE <1.41 g kg-1), the most robust of which were those generated from spectra in the visible (400-680 nm) and red-edge (680-750 nm), with values of R2 > 0.81 and RMSE <1.24 g kg-1. An independent validation, leave-one-date-out cross validation (LOOCV), was performed using data from other collections, which confirmed the robustness and the possibility of LNC prediction in new data sets, derived, for instance, from samplings subsequent to the period of study.

2.
Sci Rep ; 13(1): 10897, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407589

RESUMO

The pressure for food production has expanded agriculture frontiers worldwide, posing a threat to water resources. For instance, placing crop systems over hydromorphic soils (HS), have a direct impact on groundwater and influence the recharge of riverine ecosystems. Environmental regulations improved over the past decades, but it is difficult to detect and protect these soils. To overcome this issue, we applied a temporal remote sensing strategy to generate a synthetic soil image (SYSI) associated with random forest (RF) to map HS in an 735,953.8 km2 area in Brazil. HS presented different spectral patterns from other soils, allowing the detection by satellite sensors. Slope and SYSI contributed the most for the prediction model using RF with cross validation (accuracy of 0.92). The assessments showed that 14.5% of the study area represented HS, mostly located inside agricultural areas. Soybean and pasture areas had up to 14.9% while sugar cane had just 3%. Here we present an advanced remote sensing technique that may improve the identification of HS under agriculture and assist public policies for their conservation.

3.
Sci Total Environ ; 882: 163572, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084908

RESUMO

Soil available water capacity (AWC) is a key function for human survival and well-being. However, its direct measurement is laborious and spatial interpretation is complex. Digital soil mapping (DSM) techniques emerge as an alternative to spatial modeling of soil properties. DSM techniques commonly apply machine learning (ML) models, with a high level of complexity. In this context, we aimed to perform a digital mapping of soil AWC and interpret the results of the Random Forest (RF) algorithm and, in a case study, to show that digital AWC maps can support agricultural planning in response to the local effects of climate change. To do so, we divided this research into two approaches: In the first approach, we showed a DSM using 1857 sample points in a southeastern region of Brazil with laboratory-determined soil attributes, together with a pedotransfer function (PTF), remote sensing and DSM techniques. In the second approach, the constructed AWC digital soil map and weather station data were used to calculate climatological soil water balances for the periods between 1917-1946 and 1991-2020. The result showed the selection of covariates using Shapley values as a criterion contributed to the parsimony of the model, obtaining goodness-of-fit metrics of R2 0.72, RMSE 16.72 mm m-1, CCC 0.83, and Bias of 0.53 over the validation set. The highest contributing covariates for soil AWC prediction were the Landsat multitemporal images with bare soil pixels, mean diurnal, and annual temperature range. Under the current climate conditions, soil available water content (AW) increased during the dry period (April to August). May had the highest increase in AW (∼17 mm m-1) and decrease in September (∼14 mm m-1). The used methodology provides support for AWC modeling at 30 m resolution, as well as insight into the adaptation of crop growth periods to the effects of climate change.

4.
Sci Rep ; 10(1): 4461, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157136

RESUMO

The Earth's surface dynamics provide essential information for guiding environmental and agricultural policies. Uncovered and unprotected surfaces experience several undesirable effects, which can affect soil ecosystem functions. We developed a technique to identify global bare surface areas and their dynamics based on multitemporal remote sensing images to aid the spatiotemporal evaluation of anthropic and natural phenomena. The bare Earth's surface and its changes were recognized by Landsat image processing over a time range of 30 years using the Google Earth Engine platform. Two additional products were obtained with a similar technique: a) Earth's bare surface frequency, which represents where and how many times a single pixel was detected as bare surface, based on Landsat series, and b) Earth's bare soil tendency, which represents the tendency of bare surface to increase or decrease. This technique enabled the retrieval of bare surfaces on 32% of Earth's total land area and on 95% of land when considering only agricultural areas. From a multitemporal perspective, the technique found a 2.8% increase in bare surfaces during the period on a global scale. However, the rate of soil exposure decreased by ~4.8% in the same period. The increase in bare surfaces shows that agricultural areas are increasing worldwide. The decreasing rate of soil exposure indicates that, unlike popular opinion, more soils have been covered due to the adoption of conservation agriculture practices, which may reduce soil degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...