Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 33(3): vo1, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179995

RESUMO

Despite substantial investment and effort by federal agencies and institutions to improve the diversity of the professoriate, progress is excruciatingly slow. One program that aims to enhance faculty diversity is the Institutional Research and Academic Career Development Award (IRACDA) funded by the National Institutes of Health/National Institute of General Medical Sciences. IRACDA supports the training of a diverse cohort of postdoctoral scholars who will seek academic research and teaching careers. The San Diego IRACDA program has trained 109 postdoctoral scholars since its inception in 2003; 59% are women and 63% are underrepresented (UR) Black/African-American, Latinx/Mexican-American, and Indigenous scientists. Sixty-four percent obtained tenure-track faculty positions, including a substantial 32% at research-intensive institutions. However, the COVID-19 pandemic crisis threatens to upend IRACDA efforts to improve faculty diversity, and academia is at risk of losing a generation of diverse, talented scholars. Here, a group of San Diego IRACDA postdoctoral scholars reflects on these issues and discusses recommendations to enhance the retention of UR scientists to avoid a "lost generation" of promising UR faculty scholars.


Assuntos
COVID-19 , Diversidade Cultural , Educação de Pós-Graduação , Docentes de Medicina/estatística & dados numéricos , Bolsas de Estudo/estatística & dados numéricos , Pandemias , SARS-CoV-2 , Universidades/estatística & dados numéricos , California , Educação de Pós-Graduação/economia , Etnicidade/estatística & dados numéricos , Docentes de Medicina/economia , Feminino , Humanos , Masculino , Grupos Minoritários/estatística & dados numéricos , National Institute of General Medical Sciences (U.S.) , National Institutes of Health (U.S.) , Pesquisadores/economia , Pesquisadores/educação , Pesquisadores/estatística & dados numéricos , Salários e Benefícios/estatística & dados numéricos , Estados Unidos , Universidades/economia , Mulheres/educação
2.
Front Mol Neurosci ; 14: 782041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867193

RESUMO

Protein kinase A (PKA) signaling is essential for numerous processes but the subcellular localization of specific PKA regulatory (R) and catalytic (C) subunits has yet to be explored comprehensively. Additionally, the localization of the Cß subunit has never been spatially mapped in any tissue even though ∼50% of PKA signaling in neuronal tissues is thought to be mediated by Cß. Here we used human retina with its highly specialized neurons as a window into PKA signaling in the brain and characterized localization of PKA Cα, Cß, RIIα, and RIIß subunits. We found that each subunit presented a distinct localization pattern. Cα and Cß were localized in all cell layers (photoreceptors, interneurons, retinal ganglion cells), while RIIα and RIIß were selectively enriched in photoreceptor cells where both showed distinct patterns of co-localization with Cα but not Cß. Only Cα was observed in photoreceptor outer segments and at the base of the connecting cilium. Cß in turn, was highly enriched in mitochondria and was especially prominent in the ellipsoid of cone cells. Further investigation of Cß using RNA BaseScope technology showed that two Cß splice variants (Cß4 and Cß4ab) likely code for the mitochondrial Cß proteins. Overall, our data indicates that PKA Cα, Cß, RIIα, and RIIß subunits are differentially localized and are likely functionally non-redundant in the human retina. Furthermore, Cß is potentially important for mitochondrial-associated neurodegenerative diseases previously linked to PKA dysfunction.

3.
Interface Focus ; 11(2): 20200026, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33633829

RESUMO

Soluble adenylyl cyclase (sAC) is a HC O 3 - -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid-base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HC O 3 - at physiologically relevant levels for fish internal fluids (EC50 ∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid-base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals.

4.
J Comp Physiol B ; 191(1): 113-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216162

RESUMO

We tested in six fish species [Pacific lamprey (Lampetra richardsoni), Pacific spiny dogfish (Squalus suckleyi), Asian swamp eel (Monopterus albus), white sturgeon (Acipenser transmontanus), zebrafish (Danio rerio), and starry flounder (Platichthys stellatus)] the hypothesis that elevated extracellular [HCO3-] protects spontaneous heart rate and cardiac force development from the known impairments that severe hypoxia and hypercapnic acidosis can induce. Hearts were exposed in vitro to either severe hypoxia (~ 3% of air saturation), or severe hypercapnic acidosis (either 7.5% CO2 or 15% CO2), which reduced heart rate (in six test species) and net force development (in three test species). During hypoxia, heart rate was restored by [HCO3-] in a dose-dependent fashion in lamprey, dogfish and eel (EC50 = 5, 25 and 30 mM, respectively), but not in sturgeon, zebrafish or flounder. During hypercapnia, elevated [HCO3-] completely restored heart rate in dogfish, eel and sturgeon (EC50 = 5, 25 and 30 mM, respectively), had a partial effect in lamprey and zebrafish, and had no effect in flounder. Elevated [HCO3-], however, had no significant effect on net force of electrically paced ventricular strips from dogfish, eel and flounder during hypoxia and hypercapnia. Only in lamprey hearts did a specific soluble adenylyl cyclase (sAC) inhibitor, KH7, block the HCO3--mediated rescue of heart rate during both hypoxia and hypercapnia, and was the only species where we conclusively demonstrated sAC activity was involved in the protective effects of HCO3- on cardiac function. Our results suggest a common HCO3--dependent, sAC-dependent transduction pathway for heart rate recovery exists in cyclostomes and a HCO3--dependent, sAC-independent pathway exists in other fish species.


Assuntos
Bicarbonatos , Hipercapnia , Animais , Dióxido de Carbono , Hipóxia , Peixe-Zebra
6.
J Exp Zool A Ecol Integr Physiol ; 333(6): 449-465, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32458594

RESUMO

The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3- ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3- have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3- accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.


Assuntos
Equilíbrio Ácido-Base/genética , Equilíbrio Ácido-Base/fisiologia , Evolução Biológica , Peixes/fisiologia , Invertebrados/fisiologia , Animais , Peixes/genética , Concentração de Íons de Hidrogênio , Invertebrados/genética
7.
J Exp Biol ; 222(Pt 10)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31085601

RESUMO

Na+/K+-ATPase (NKA)- and vacuolar H+-ATPase (VHA)-rich cells in shark gills secrete excess acid and base, respectively, to seawater to maintain blood acid-base homeostasis. Both cell types are rich in mitochondria, indicating high ATP demand; however, their metabolic fuel is unknown. Here, we report that NKA- and VHA-rich cells have large glycogen stores. Glycogen abundance in NKA-rich cells was lower in starved sharks compared with 24 h post-fed sharks, reflecting higher energy demand for acid secretion during normal activity and glycogen replenishment during the post-feeding period. Conversely, glycogen abundance in VHA-rich cells was high in starved sharks and it became depleted post-feeding. Furthermore, inactive cells with cytoplasmic VHA had large glycogen stores and active cells with basolateral VHA had depleted glycogen stores. These results indicate that glycogen is a main energy source in both NKA- and VHA-rich cells, and point to differential energy use associated with net acid and net base secretion, respectively.


Assuntos
Brânquias/metabolismo , Glicogênio/metabolismo , Tubarões/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPases Vacuolares Próton-Translocadoras/química , Animais , Feminino , Privação de Alimentos , Brânquias/química , Masculino , Distribuição Aleatória
8.
J Exp Biol ; 221(Pt 18)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30065035

RESUMO

Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.


Assuntos
Proteínas de Algas/metabolismo , Cardiidae/fisiologia , Dinoflagellida/metabolismo , Fotossíntese , Proteínas de Protozoários/metabolismo , Simbiose/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Metabolismo Energético
9.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899125

RESUMO

The giant clam Tridacna crocea, native to Indo-Pacific coral reefs, is noted for its unique ability to bore fully into coral rock and is a major agent of reef bioerosion. However, T. crocea's mechanism of boring has remained a mystery despite decades of research. By exploiting a new, two-dimensional pH-sensing technology and manipulating clams to press their presumptive boring tissue (the pedal mantle) against pH-sensing foils, we show that this tissue lowers the pH of surfaces it contacts by greater than or equal to 2 pH units below seawater pH day and night. Acid secretion is likely mediated by vacuolar-type H+-ATPase, which we demonstrate (by immunofluorescence) is abundant in the pedal mantle outer epithelium. Our discovery of acid secretion solves this decades-old mystery and reveals that, during bioerosion, T. crocea can liberate reef constituents directly to the soluble phase, rather than producing sediment alone as earlier assumed.


Assuntos
Bivalves/metabolismo , Epitélio/química , Ácidos/metabolismo , Animais , Bivalves/química , Recifes de Corais , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/análise
10.
Physiol Rep ; 5(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28108644

RESUMO

The enzyme soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate (HCO3-) to produce the signaling molecule cyclic adenosine monophosphate (cAMP). Because sAC and sAC-related enzymes are found throughout phyla from cyanobacteria to mammals and they regulate cell physiology in response to internal and external changes in pH, CO2, and HCO3-, sAC is deemed an evolutionarily conserved acid-base sensor. Previously, sAC has been reported in dogfish shark and round ray gill cells, where they sense and counteract blood alkalosis by regulating the activity of V-type H+- ATPase. Here, we report the presence of sAC protein in gill, rectal gland, cornea, intestine, white muscle, and heart of leopard shark Triakis semifasciata Co-expression of sAC with transmembrane adenylyl cyclases supports the presence of cAMP signaling microdomains. Furthermore, immunohistochemistry on tissue sections, and western blots and cAMP-activity assays on nucleus-enriched fractions demonstrate the presence of sAC protein in and around nuclei. These results suggest that sAC modulates multiple physiological processes in shark cells, including nuclear functions.


Assuntos
Adenilil Ciclases/isolamento & purificação , Bicarbonatos/metabolismo , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Tubarões/metabolismo , Animais , Córnea/enzimologia , Intestinos/enzimologia , Miocárdio/enzimologia , Glândula de Sal/enzimologia
11.
J Exp Biol ; 219(Pt 20): 3227-3236, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27510962

RESUMO

Although neural modulation of heart rate is well established among chordate animals, the Pacific hagfish (Eptatretus stoutii) lacks any cardiac innervation, yet it can increase its heart rate from the steady, depressed heart rate seen in prolonged anoxia to almost double its normal normoxic heart rate, an almost fourfold overall change during the 1-h recovery from anoxia. The present study sought mechanistic explanations for these regulatory changes in heart rate. We provide evidence for a bicarbonate-activated, soluble adenylyl cyclase (sAC)-dependent mechanism to control heart rate, a mechanism never previously implicated in chordate cardiac control.


Assuntos
Feiticeiras (Peixe)/fisiologia , Frequência Cardíaca/fisiologia , Adenilil Ciclases/metabolismo , Animais , Membrana Celular/enzimologia , AMP Cíclico/metabolismo , Feminino , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Miocárdio/enzimologia , Receptores Adrenérgicos beta/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Solubilidade
12.
Am J Physiol Cell Physiol ; 311(2): C340-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27335168

RESUMO

Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology.


Assuntos
Adenilil Ciclases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Inibidores de Adenilil Ciclases/farmacologia , Alcalose/metabolismo , Alcalose/fisiopatologia , Animais , Bicarbonatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/metabolismo , Didesoxiadenosina/análogos & derivados , Didesoxiadenosina/metabolismo , Células Epiteliais/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/fisiologia , Concentração de Íons de Hidrogênio , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Rajidae/metabolismo , Rajidae/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-24746982

RESUMO

In this study we characterized mitochondrion-rich (MR) cells and regulation of acid/base (A/B) relevant ion-transporting proteins in leopard shark (Triakis semifasciata) gills. Immunohistochemistry revealed that leopard shark gills posses two separate cell populations that abundantly express either Na⁺/K⁺-ATPase (NKA) or V-H⁺-ATPase (VHA), but not both ATPases together. Co-immunolocalization with mitochondrial Complex IV demonstrated, for the first time in shark gills, that both NKA- and VHA-rich cells are also MR cells, and that all MR cells are either NKA- or VHA-rich cells. Additionally we localized the anion exchanger pendrin to VHA-rich cells, but not NKA-rich cells. In starved sharks, VHA was localized throughout the cell cytoplasm and pendrin was present at the apical pole (but not in the membrane). However, in a significant number of gill cells from fed leopard sharks, VHA translocated to the basolateral membrane (as previously described in dogfish), and pendrin translocated to the apical membrane. Our results highlight the importance of translocation of ion-transporting proteins to the cell membrane as a regulatory mechanism for A/B regulation.


Assuntos
Membrana Celular/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Ingestão de Alimentos/fisiologia , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Tubarões/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Equilíbrio Ácido-Base , Animais , Animais de Zoológico/fisiologia , California , Polaridade Celular , Citoplasma/enzimologia , Citoplasma/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Brânquias/citologia , Brânquias/enzimologia , Masculino , Oceano Pacífico , Isoformas de Proteínas/metabolismo , Transporte Proteico , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
J Exp Biol ; 217(Pt 5): 663-72, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24574382

RESUMO

Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved.


Assuntos
Adenilil Ciclases/metabolismo , Bicarbonatos/metabolismo , Invertebrados/metabolismo , Vertebrados/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...