Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
J Alzheimers Dis ; 96(2): 591-607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840487

RESUMO

BACKGROUND: Comprehensive treatment of Alzheimer's disease and related dementias (ADRD) requires not only pharmacologic treatment but also management of existing medical conditions and lifestyle modifications including diet, cognitive training, and exercise. Personalized, multimodal therapies are needed to best prevent and treat Alzheimer's disease (AD). OBJECTIVE: The Coaching for Cognition in Alzheimer's (COCOA) trial was a prospective randomized controlled trial to test the hypothesis that a remotely coached multimodal lifestyle intervention would improve early-stage AD. METHODS: Participants with early-stage AD were randomized into two arms. Arm 1 (N = 24) received standard of care. Arm 2 (N = 31) additionally received telephonic personalized coaching for multiple lifestyle interventions. The primary outcome was a test of the hypothesis that the Memory Performance Index (MPI) change over time would be better in the intervention arm than in the control arm. The Functional Assessment Staging Test was assessed for a secondary outcome. COCOA collected psychometric, clinical, lifestyle, genomic, proteomic, metabolomic, and microbiome data at multiple timepoints (dynamic dense data) across two years for each participant. RESULTS: The intervention arm ameliorated 2.1 [1.0] MPI points (mean [SD], p = 0.016) compared to the control over the two-year intervention. No important adverse events or side effects were observed. CONCLUSION: Multimodal lifestyle interventions are effective for ameliorating cognitive decline and have a larger effect size than pharmacological interventions. Dietary changes and exercise are likely to be beneficial components of multimodal interventions in many individuals. Remote coaching is an effective intervention for early stage ADRD. Remote interventions were effective during the COVID pandemic.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/terapia , Estudos Prospectivos , Proteômica , Estilo de Vida , Disfunção Cognitiva/terapia , Cognição
3.
Front Genet ; 14: 1287894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818104
4.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742646

RESUMO

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Assuntos
Doença de Alzheimer , Insulinas , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Amiloide , Proteínas Amiloidogênicas , Dieta com Restrição de Carboidratos , Carboidratos , Atrofia/complicações
5.
Commun Biol ; 6(1): 768, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481675

RESUMO

Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.


Assuntos
Metabolismo dos Lipídeos , Longevidade , Animais , Camundongos , Envelhecimento , Modelos Animais de Doenças , Fígado , Ácidos Graxos
6.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752514

RESUMO

MOTIVATION: With the rapidly growing volume of knowledge and data in biomedical databases, improved methods for knowledge-graph-based computational reasoning are needed in order to answer translational questions. Previous efforts to solve such challenging computational reasoning problems have contributed tools and approaches, but progress has been hindered by the lack of an expressive analysis workflow language for translational reasoning and by the lack of a reasoning engine-supporting that language-that federates semantically integrated knowledge-bases. RESULTS: We introduce ARAX, a new reasoning system for translational biomedicine that provides a web browser user interface and an application programming interface (API). ARAX enables users to encode translational biomedical questions and to integrate knowledge across sources to answer the user's query and facilitate exploration of results. For ARAX, we developed new approaches to query planning, knowledge-gathering, reasoning and result ranking and dynamically integrate knowledge providers for answering biomedical questions. To illustrate ARAX's application and utility in specific disease contexts, we present several use-case examples. AVAILABILITY AND IMPLEMENTATION: The source code and technical documentation for building the ARAX server-side software and its built-in knowledge database are freely available online (https://github.com/RTXteam/RTX). We provide a hosted ARAX service with a web browser interface at arax.rtx.ai and a web API endpoint at arax.rtx.ai/api/arax/v1.3/ui/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Software , Bases de Dados Factuais , Idioma , Navegador
7.
BMC Bioinformatics ; 23(1): 400, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175836

RESUMO

BACKGROUND: Biomedical translational science is increasingly using computational reasoning on repositories of structured knowledge (such as UMLS, SemMedDB, ChEMBL, Reactome, DrugBank, and SMPDB in order to facilitate discovery of new therapeutic targets and modalities. The NCATS Biomedical Data Translator project is working to federate autonomous reasoning agents and knowledge providers within a distributed system for answering translational questions. Within that project and the broader field, there is a need for a framework that can efficiently and reproducibly build an integrated, standards-compliant, and comprehensive biomedical knowledge graph that can be downloaded in standard serialized form or queried via a public application programming interface (API). RESULTS: To create a knowledge provider system within the Translator project, we have developed RTX-KG2, an open-source software system for building-and hosting a web API for querying-a biomedical knowledge graph that uses an Extract-Transform-Load approach to integrate 70 knowledge sources (including the aforementioned core six sources) into a knowledge graph with provenance information including (where available) citations. The semantic layer and schema for RTX-KG2 follow the standard Biolink model to maximize interoperability. RTX-KG2 is currently being used by multiple Translator reasoning agents, both in its downloadable form and via its SmartAPI-registered interface. Serializations of RTX-KG2 are available for download in both the pre-canonicalized form and in canonicalized form (in which synonyms are merged). The current canonicalized version (KG2.7.3) of RTX-KG2 contains 6.4M nodes and 39.3M edges with a hierarchy of 77 relationship types from Biolink. CONCLUSION: RTX-KG2 is the first knowledge graph that integrates UMLS, SemMedDB, ChEMBL, DrugBank, Reactome, SMPDB, and 64 additional knowledge sources within a knowledge graph that conforms to the Biolink standard for its semantic layer and schema. RTX-KG2 is publicly available for querying via its API at arax.rtx.ai/api/rtxkg2/v1.2/openapi.json . The code to build RTX-KG2 is publicly available at github:RTXteam/RTX-KG2 .


Assuntos
Conhecimento , Reconhecimento Automatizado de Padrão , Semântica , Software , Ciência Translacional Biomédica
8.
Alzheimers Dement (N Y) ; 8(1): e12318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910672

RESUMO

Comprehensive treatment of Alzheimer's disease (AD) requires not only pharmacologic treatment but also management of existing medical conditions and lifestyle modifications including diet, cognitive training, and exercise. We present the design and methodology for the Coaching for Cognition in Alzheimer's (COCOA) trial. AD and other dementias result from the interplay of multiple interacting dysfunctional biological systems. Monotherapies have had limited success. More interventional studies are needed to test the effectiveness of multimodal multi-domain therapies for dementia prevention and treatment. Multimodal therapies use multiple interventions to address multiple systemic causes and potentiators of cognitive decline and functional loss; they can be personalized, as different sets of etiologies and systems responsive to therapy may be present in different individuals. COCOA is designed to test the hypothesis that coached multimodal interventions beneficially alter the trajectory of cognitive decline for individuals on the spectrum of AD and related dementias (ADRD). COCOA is a two-arm prospective randomized controlled trial (RCT). COCOA collects psychometric, clinical, lifestyle, genomic, proteomic, metabolomic, and microbiome data at multiple timepoints across 2 years for each participant. These data enable systems biology analyses. One arm receives standard of care and generic healthy aging recommendations. The other arm receives standard of care and personalized data-driven remote coaching. The primary outcome measure is the Memory Performance Index (MPI), a measure of cognition. The MPI is a summary statistic of the MCI Screen (MCIS). Secondary outcome measures include the Functional Assessment Staging Test (FAST), a measure of function. COCOA began enrollment in January 2018. We hypothesize that multimodal interventions will ameliorate cognitive decline and that data-driven health coaching will increase compliance, assist in personalizing multimodal interventions, and improve outcomes for patients, particularly for those in the early stages of the AD spectrum. Highlights: The Coaching for Cognition in Alzheimer's (COCOA) trial tests personalized multimodal lifestyle interventions for Alzheimer's disease and related dementias.Dense longitudinal molecular data will be useful for future studies.Increased use of Hill's criteria in analyses may advance knowledge generation.Remote coaching may be an effective intervention.Because lifestyle interventions are inexpensive, they may be particularly valuable in reducing global socioeconomic disparities in dementia care.

10.
medRxiv ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35734092

RESUMO

Projections of the near future of daily case incidence of COVID-19 are valuable for informing public policy. Near-future estimates are also useful for outbreaks of other diseases. Short-term predictions are unlikely to be affected by changes in herd immunity. In the absence of major net changes in factors that affect reproduction number (R), the two-parameter exponential model should be a standard model - indeed, it has been standard for epidemiological analysis of pandemics for a century but in recent decades has lost popularity to more complex compartmental models. Exponential models should be routinely included in reports describing epidemiological models as a reference, or null hypothesis. Exponential models should be fitted separately for each epidemiologically distinct jurisdiction. They should also be fitted separately to time intervals that differ by any major changes in factors that affect R. Using an exponential model, incidence-count half-life (t1/2) is a better statistic than R. Here an example of the exponential model is applied to King County, Washington during Spring 2020. During the pandemic, the parameters and predictions of this model have remained stable for intervals of one to four months, and the accuracy of model predictions has outperformed models with more parameters. The COVID pandemic can be modeled as a series of exponential curves, each spanning an interval ranging from one to four months. The length of these intervals is hard to predict, other than to extrapolate that future intervals will last about as long as past intervals.

11.
Mol Psychiatry ; 27(9): 3842-3856, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546635

RESUMO

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.


Assuntos
Transtorno Bipolar , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Redes Reguladoras de Genes/genética , Cerebelo/metabolismo
12.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36679852

RESUMO

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

13.
Alzheimers Dement (N Y) ; 7(1): e12191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295960

RESUMO

INTRODUCTION: There is an urgent need to develop effective interventional treatments for people with Alzheimer's disease (AD). AD results from a complex multi-decade interplay of multiple interacting dysfunctional biological systems that have not yet been fully elucidated. Epidemiological studies have linked several modifiable lifestyle factors with increased incidence for AD. Because monotherapies have failed to prevent or ameliorate AD, interventional studies should deploy multiple, targeted interventions that address the dysfunctional systems that give rise to AD. METHODS: This randomized controlled trial (RCT) will examine the efficacy of a 12-month personalized, multimodal, lifestyle intervention in 60 mild cognitive impairment (MCI) and early stage AD patients (aged 50+, amyloid positivity). Both groups receive data-driven, lifestyle recommendations designed to target multiple systemic pathways implicated in AD. One group receives these personalized recommendations without coaching. The other group receives personalized recommendations with health coaching, dietary counseling, exercise training, cognitive stimulation, and nutritional supplements. We collect clinical, proteomic, metabolomic, neuroimaging, and genetic data to fuel systems-biology analyses. We will examine effects on cognition and hippocampal volume. The overarching goal of the study is to longitudinally track biological systems implicated in AD to reveal the dynamics between these systems during the intervention to understand differences in treatment response. RESULTS: We have developed and implemented a protocol for a personalized, multimodal intervention program for early AD patients. We began enrollment in September 2019; we have enrolled a third of our target (20 of 60) with a 95% retention and 86% compliance rate. DISCUSSION: This study presents a paradigm shift in designing multimodal, lifestyle interventions to reduce cognitive decline, and how to elucidate the biological systems being targeted. Analytical efforts to explain mechanistic or causal underpinnings of individual trajectories and the interplay between multi-omic variables will inform the design of future hypotheses and development of effective precision medicine trials.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35237464

RESUMO

We report a case of a patient with mixed dementia successfully treated with a personalized multimodal therapy. Monotherapeutics are inadequate for the treatment of Alzheimer's disease (AD) and mixed dementia; therefore, we approach treatment through an adaptive personalized multimodal program. Many multimodal programs are pre-determined, and thus may not address the underlying contributors to cognitive decline in each particular individual. The combination of a targeted, personalized, precision medicine approach using a multimodal program promises advantages over monotherapies and untargeted multimodal therapies for multifactorial dementia. In this case study, we describe successful treatment for a patient diagnosed with AD, using a multimodal, programmatic, precision medicine intervention encompassing therapies targeting multiple dementia diastheses. We describe specific interventions used in this case that are derived from a comprehensive protocol for AD precision medicine. After treatment, our patient demonstrated improvements in quantitative neuropsychological testing, volumetric neuroimaging, PET scans, and serum chemistries, accompanied by symptomatic improvement over a 3.5-year period. This case outcome supports the need for rigorous trials of comprehensive, targeted combination therapies to stabilize, restore, and prevent cognitive decline in individuals with potentially many underlying causes of such decline and dementia. Our multimodal therapy included personalized treatments to address each potential perturbation to neuroplasticity. In particular, neuroinflammation and metabolic subsystems influence cognitive function and hippocampal volume. In this patient with a primary biliary cholangitis (PBC) multimorbidity component, we introduced a personalized diet that helped reduce liver inflammation. Together, all these components of multimodal therapy showed a sustained functional and cognitive benefit. Multimodal therapies may have systemwide benefits on all dementias, particularly in the context of multimorbidity. Furthermore, these therapies provide generalized health benefits, as many of the factors - such as inflammation - that impact cognitive function also impact other systems.

15.
medRxiv ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995830

RESUMO

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a new strain harboring the spike variant D614G. With antibody and B cell analytics, we show correlates of adaptive immunity, including a differential response to D614G. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

16.
Proc Natl Acad Sci U S A ; 116(12): 5819-5827, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833390

RESUMO

Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.


Assuntos
Predisposição Genética para Doença/genética , Nascimento Prematuro/genética , Metilação de DNA/genética , Feminino , Genômica/métodos , Humanos , Recém-Nascido , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Sequenciamento Completo do Genoma/métodos
17.
Eur Neuropsychopharmacol ; 29(1): 156-170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503783

RESUMO

Genome-wide association studies of case-control status have advanced the understanding of the genetic basis of psychiatric disorders. Further progress may be gained by increasing sample size but also by new analysis strategies that advance the exploitation of existing data, especially for clinically important quantitative phenotypes. The functionally-informed efficient region-based test strategy (FIERS) introduced herein uses prior knowledge on biological function and dependence of genotypes within a powerful statistical framework with improved sensitivity and specificity for detecting consistent genetic effects across studies. As proof of concept, FIERS was used for the first genome-wide single nucleotide polymorphism (SNP)-based investigation on bipolar disorder (BD) that focuses on an important aspect of disease course, the functional outcome. FIERS identified a significantly associated locus on chromosome 15 (hg38: chr15:48965004 - 49464789 bp) with consistent effect strength between two independent studies (GAIN/TGen: European Americans, BOMA: Germans; n = 1592 BD patients in total). Protective and risk haplotypes were found on the most strongly associated SNPs. They contain a CTCF binding site (rs586758); CTCF sites are known to regulate sets of genes within a chromatin domain. The rs586758 - rs2086256 - rs1904317 haplotype is located in the promoter flanking region of the COPS2 gene, close to microRNA4716, and the EID1, SHC4, DTWD1 genes as plausible biological candidates. While implication with BD is novel, COPS2, EID1, and SHC4 are known to be relevant for neuronal differentiation and function and DTWD1 for psychopharmacological side effects. The test strategy FIERS that enabled this discovery is equally applicable for tag SNPs and sequence data.


Assuntos
Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , Predisposição Genética para Doença/genética , Adolescente , Adulto , Idoso , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único/genética , Prognóstico , Escalas de Graduação Psiquiátrica , População Branca/genética , Adulto Jovem
18.
Nat Genet ; 50(11): 1615, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30291356

RESUMO

In the version of this article published, the P values for the enrichment of single mutation categories were inadvertently not corrected for multiple testing. After multiple-testing correction, only two of the six mutation categories mentioned are still statistically significant. To reflect this, the text "More specifically, paternally derived DNMs are enriched in transitions in A[.]G contexts, especially ACG>ATG and ATG>ACG (Bonferroni-corrected P = 1.3 × 10-2 and P = 1 × 10-3, respectively). Additionally, we observed overrepresentation of ATA>ACA mutations (Bonferroni-corrected P = 4.28 × 10-2) for DNMs of paternal origin. Among maternally derived DNMs, CCA>CTA, GCA>GTA and TCT>TGT mutations were significantly overrepresented (Bonferroni-corrected P = 4 × 10-4, P = 5 × 10-4, P = 1 × 10-3, respectively)" should read "More specifically, CCA>CTA and GCA>GTA mutations were significantly overenriched on the maternal allele (Bonferroni-corrected P = 0.0192 and P = 0.048, respectively)." Additionally, the last sentence to the legend for Fig. 3b should read "Green boxes highlight the mutation categories that differ significantly" instead of "Green boxes highlight the mutation categories that differ more than 1% of mutation load with a bootstrapping P value <0.05." Corrected versions of Fig. 3b and Supplementary Table 25 appear with the Author Correction.

19.
PLoS Genet ; 14(5): e1007274, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750799

RESUMO

Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.


Assuntos
Genes Modificadores/genética , Estudo de Associação Genômica Ampla/métodos , Doença de Huntington/genética , Sequenciamento Completo do Genoma/métodos , Proteínas Adaptadoras de Transdução de Sinal , Idade de Início , Saúde da Família , Feminino , Interação Gene-Ambiente , Genética Populacional , Haplótipos , Humanos , Proteína Huntingtina/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Venezuela
20.
Sci Rep ; 8(1): 6771, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29691419

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...