Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 133: 105198, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35659913

RESUMO

Material jetting and vat photopolymerization additive manufacturing (AM) processes use liquid resins to build objects. These resins can contain skin irritants and/or sensitizers but product safety data sheets (SDSs) might not declare all ingredients. We characterized elemental and organic skin irritants and sensitizers present in 39 commercial products; evaluated the influence of resin manufacturer, system, color, and AM process type on the presence of irritants and sensitizers; and compared product SDSs to results. Among all products, analyses identified 23 irritant elements, 54 irritant organic substances, 22 sensitizing elements, and 23 sensitizing organic substances; SDSs listed 3, 9, 4, and 6 of these ingredients, respectively. Per product, the number and total mass (an indicator of potential dermal loading) of ingredients varied: five to 17 irritant elements (8.32-4756.65 mg/kg), one to 17 irritant organics (3273 to 356,000 mg/kg), four to 17 sensitizing elements (8.27-4755.63 mg/kg), and one to seven sensitizing organics (15-382,170 mg/kg). Median numbers and concentrations of irritants and sensitizers were significantly influenced by resin system and AM process type. The presence of undeclared irritants and sensitizers in these resins supports the need for more complete information on product SDSs for comprehensive dermal risk assessments.


Assuntos
Qualidade de Produtos para o Consumidor , Irritantes , Lâmpadas de Polimerização Dentária , Irritantes/toxicidade , Cura Luminosa de Adesivos Dentários , Medição de Risco
2.
Toxicol Rep ; 7: 1350-1355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102138

RESUMO

It is estimated that greater than 1 million workers are exposed to welding fume (WF) by inhalation daily. The potentially toxic metals found in WF are known to cause multiple adverse pulmonary and systemic effects, including cardiovascular disease, and these metals have also been shown to translocate to the liver. This occupational exposure combined with a high fat (HF) Western diet, which has been shown to cause hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), has the potential to cause significant mixed exposure metabolic changes in the liver. The goal of this study was to use matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) to analyze the spatial distribution and abundance changes of lipid species in Sprague Dawley rat liver maintained on a HF diet combined with WF inhalation. The results of the MALDI-IMS analysis revealed unique hepatic lipid profiles for each treatment group. The HF diet group had significantly increased abundance of triglycerides and phosphatidylinositol lipids, as well as decreased lysophosphatidic lipids and cardiolipin. Ceramide-1-phosphate was found at higher abundance in the regular (REG) diet WF-exposed group which has been shown to regulate the eicosanoid pathway involved in pro-inflammatory response. The results of this study showed that the combined effects of WF inhalation and a HF diet significantly altered the hepatic lipidome. Additionally, pulmonary exposure to WF alone increased lipid markers of inflammation.

3.
Biol Psychiatry ; 87(6): 570-576, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706582

RESUMO

BACKGROUND: An imbalance between neuropeptides that promote stress and resilience, such as corticotropin-releasing factor and nociceptin, has been postulated to underlie relapse in addiction. The objective of this study was to develop a paradigm to image the in vivo interaction between stress-promoting neuropeptides and nociceptin (NOP) receptors in humans. METHODS: [11C]NOP-1A positron emission tomography was used to measure the binding to NOP receptors at baseline (BASE) and following an intravenous hydrocortisone challenge (CORT) in 19 healthy control subjects. Hydrocortisone was used as a challenge because in microdialysis studies it has been shown to increase corticotropin-releasing factor release in extrahypothalamic brain regions such as the amygdala. [11C]NOP-1A total distribution volume (VT) in 11 regions of interest were measured using a 2-tissue compartment kinetic analysis. The primary outcome measure was hydrocortisone-induced ΔVT calculated as (VT CORT - VT BASE)/VT BASE. RESULTS: Hydrocortisone led to an acute increase in plasma cortisol levels. Regional [11C]NOP-1A VT was on average 11% to 16% higher in the post-hydrocortisone condition compared with the baseline condition (linear mixed model, condition, p = .005; region, p < .001; condition × region, p < .001). Independent Student's t tests in all regions of interest were statistically significant and survived multiple comparison correction. Hydrocortisone-induced ΔVT was significantly negatively correlated with baseline VT in several regions of interest. CONCLUSIONS: Hydrocortisone administration increases NOP receptor availability. Increased NOP in response to elevated cortisol might suggest a compensatory mechanism in the brain to counteract corticotropin-releasing factor and/or stress. The [11C]NOP-1A and hydrocortisone imaging paradigm should allow for the examination of interactions between stress-promoting neuropeptides and NOP in addictive disorders.


Assuntos
Hidrocortisona , Neuropeptídeos , Humanos , Cinética , Peptídeos Opioides , Receptores Opioides , Receptor de Nociceptina , Nociceptina
4.
Environ Res ; 180: 108900, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711660

RESUMO

Inhalation of welding fume (WF) can result in the deposition of toxic metals, such as manganese (Mn), in the brain and may cause neurological changes in exposed workers. Alterations in telomere length are indicative of cellular aging and, possibly, neurodegeneration. Here, we investigated the effect of WF inhalation on telomere length and markers of neurodegeneration in whole brain tissue in rats. Male Fischer-344 (F-344) rats were exposed by inhalation to stainless steel WF (20 mg/m3 x 3 h/d x 4 d/wk x 5 wk) or filtered air (control). Telomere length, DNA-methylation, gene expression of Trf1, Trf2, ATM, and APP, protein expression of p-Tau, α-synuclein, and presenilin 1 and 2 were assessed in whole brain tissue at 12 wk after WF exposure ended. Results suggest that WF inhalation increased telomere length without affecting telomerase in whole brain. Moreover, we observed that components of the shelterin complex, Trf1 and Trf2, play an important role in telomere end protection, and their regulation may be responsible for the increase in telomere length. In addition, expression of different neurodegeneration markers, such as p-Tau, presenilin 1-2 and α-synuclein proteins, were increased in brain tissue from the WF-exposed rats as compared to control. These findings suggest a possible correlation between epigenetic modifications, telomere length alteration, and neurodegeneration because of the presence of factors in serum after WF exposure that may cause extra-pulmonary effects as well as the translocation of potentially neurotoxic metals associated with WF to the central nervous system (CNS). Further studies are needed to investigate the brain region specificity and temporal response of these effects.


Assuntos
Poluentes Ocupacionais do Ar , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição por Inalação , Telômero , Soldagem , Poluentes Ocupacionais do Ar/toxicidade , Animais , Encéfalo , Gatos , Metilação de DNA , Células Endoteliais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Toxicol Sci ; 174(1): 100-111, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868906

RESUMO

The exposome is the measure of all exposures of an individual in a lifetime and how those exposures relate to health. The goal was to examine an experimental model integrating multiple aspects of the exposome by collecting biological samples during critical life stages of an exposed animal that are applicable to worker populations. Genetic contributions were assessed using strains of male rats with different genetic backgrounds (Fischer-344, Sprague Dawley, and Brown-Norway) maintained on a regular or high-fat diet for 24 weeks. At week 7 during diet maintenance, groups of rats from each strain were exposed to stainless steel welding fume (WF; 20 mg/m3 × 3 h/d × 4 days/week × 5 weeks) or air until week 12, at which time some animals were euthanized. A separate set of rats from each strain were allowed to recover from WF exposure until the end of the 24-week period. Bronchoalveolar lavage fluid and serum were collected at 7, 12, and 24 weeks to assess general health indices. Depending on animal strain, WF exposure and high-fat diet together worsened kidney toxicity as well as altered different serum enzymes and proteins. Diet had minimal interaction with WF exposure for pulmonary toxicity endpoints. Experimental factors of diet, exposure, and strain were all important, depending on the health outcome measured. Exposure had the most significant influence related to pulmonary responses. Strain was the most significant contributor regarding the other health indices examined, indicating that genetic differences possibly drive the exposome effect in each strain.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Dieta Hiperlipídica/efeitos adversos , Expossoma , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Soldagem , Animais , Exposição por Inalação , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Exposição Ocupacional , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Medição de Risco , Especificidade da Espécie , Fatores de Tempo
6.
Inhal Toxicol ; 31(8): 299-324, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31707870

RESUMO

Background: The correlation of physico-chemical properties with mechanisms of toxicity has been proposed as an approach to predict the toxic potential of the vast number of emerging nanomaterials. Although relationships have been established between properties and the acute pulmonary inflammation induced by nanomaterials, properties' effects on other responses, such as exacerbation of respiratory allergy, have been less frequently explored.Methods: In this study, the role of nickel oxide (NiO) physico-chemical properties in the modulation of ovalbumin (OVA) allergy was examined in a murine model. Results: 181 nm fine (NiO-F) and 42 nm ultrafine (NiO-UF) particles were characterized and incorporated into a time course study where measured markers of pulmonary injury and inflammation were associated with NiO particle surface area. In the OVA model, exposure to NiO, irrespective of any metric was associated with elevated circulating total IgE levels. Serum and lung cytokine levels were similar with respect to NiO surface area. The lower surface area was associated with an enhanced Th2 profile, whereas the higher surface area was associated with a Th1-dominant profile. Surface area-normalized groups also exhibited similar alterations in OVA-specific IgE levels and lung neutrophil number. However, lung eosinophil number and allergen challenge-induced alterations in lung function related more to particle size, wherein NiO-F was associated with an increased enhanced pause response and NiO-UF was associated with increased lung eosinophil burden.Conclusions: Collectively, these findings suggest that although NiO surface area correlates best with acute pulmonary injury and inflammation following respiratory exposure, other physico-chemical properties may contribute to the modulation of immune responses in the lung.


Assuntos
Asma/induzido quimicamente , Hipersensibilidade/fisiopatologia , Pulmão/efeitos dos fármacos , Níquel/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/imunologia , Feminino , Imunoglobulina E/sangue , Imunofenotipagem , Pulmão/fisiopatologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Tamanho da Partícula
7.
J Immunotoxicol ; 16(1): 87-124, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31195861

RESUMO

The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.


Assuntos
Asma/induzido quimicamente , Dermatite Alérgica de Contato/etiologia , Exposição Ambiental/efeitos adversos , Nanopartículas Metálicas/toxicidade , Exposição Ocupacional/efeitos adversos , Asma/imunologia , Dermatite Alérgica de Contato/imunologia , Progressão da Doença , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Permeabilidade , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo
8.
Sci Rep ; 9(1): 1996, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760804

RESUMO

The objective of the current study was to determine if age, diet, and genetic disposition (animal strain) in an animal model had early effects on specific molecular markers in circulating peripheral blood mononuclear cells (PBMCs). Three strains [Sprague-Dawley (SD), Fischer 344 (F344), and Brown-Norway (BN)] of male rats were maintained on a high-fat (HF) or regular diet. Blood was collected at 4, 12, and 24 wk to assess chemistry and to recover PBMCs. Triglycerides and body weight gain increased at all time points in the HF diet group for each strain. Telomere length in PBMCs decreased in the HF diet group compared to the regular diet group up to 24 wk in all strains. Telomere length decreased in PBMCs at 24 wk compared to baseline in all strains, indicating an age-related effect. These findings highlight that diet and age cause changes in PBMCs recovered from different strains of rats. The next tier of studies will examine the contribution of an occupational exposure (e.g., welding fume inhalation) in combination with diet, age, and strain, to assess changes in the molecular responses of isolated PBMCs. In addition, studies involving lifestyle exposure (e.g., tobacco smoke) are in the planning stages and will assess the long-term effects of exposure in our animal model.


Assuntos
Metilação de DNA/genética , Exposição Ambiental/efeitos adversos , Leucócitos Mononucleares/fisiologia , Homeostase do Telômero/fisiologia , Fatores Etários , Animais , Biomarcadores/sangue , Dieta Hiperlipídica , Masculino , Modelos Animais , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Telômero/fisiologia , Triglicerídeos/sangue , Aumento de Peso
9.
Sci Rep ; 9(1): 471, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679488

RESUMO

Occupational exposure to silica has been observed to cause pulmonary fibrosis and lung cancer through complex mechanisms. Telomeres, the nucleoprotein structures with repetitive (TTAGGG) sequences at the end of chromosomes, are a molecular "clock of life", and alterations are associated with chronic disease. The shelterin complex (POT1, TRF1, TRF2, Tin2, Rap1, and POT1 and TPP1) plays an important role in maintaining telomere length and integrity, and any alteration in telomeres may activate DNA damage response (DDR) machinery resulting in telomere attrition. The goal of this study was to assess the effect of silica exposure on the regulation of the shelterin complex in an animal model. Male Fisher 344 rats were exposed by inhalation to Min-U-Sil 5 silica for 3, 6, or 12 wk at a concentration of 15 mg/m3 for 6 hr/d for 5 consecutive d/wk. Expression of shelterin complex genes was assessed in the lungs at 16 hr after the end of each exposure. Also, the relationship between increased DNA damage protein (γH2AX) and expression of silica-induced fibrotic marker, αSMA, was evaluated. Our findings reveal new information about the dysregulation of shelterin complex after silica inhalation in rats, and how this pathway may lead to the initiation of silica-induced pulmonary fibrosis.


Assuntos
Dano ao DNA , Inalação , Complexos Multiproteicos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Complexo Shelterina , Dióxido de Silício/efeitos adversos , Proteínas de Ligação a Telômeros/metabolismo , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Receptores com Domínio Discoidina/genética , Receptores com Domínio Discoidina/metabolismo , Modelos Animais de Doenças , Fibrose Pulmonar/patologia , Ratos , Complexo Shelterina/metabolismo
10.
Nanotoxicology ; 11(8): 1040-1058, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29094619

RESUMO

Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1ß and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute inflammation and toxicity in vitro and in vivo following exposure to sonicated BNNT-M was in part due to NLRP3 inflammasome activation.


Assuntos
Compostos de Boro/toxicidade , Pulmão/efeitos dos fármacos , Nanotubos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tamanho da Partícula , Piroptose/efeitos dos fármacos
11.
Inhal Toxicol ; 29(7): 322-339, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28967277

RESUMO

The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 µg) combined with silica (233 µg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 µg silica, 50 µg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 × 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Quartzo/toxicidade , Emissões de Veículos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Citocinas/imunologia , L-Lactato Desidrogenase/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Ratos Sprague-Dawley , Testes de Toxicidade Aguda
12.
Ecology ; 92(11): 2056-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22164830

RESUMO

Photoautotrophs are generally considered to be the base of food webs, and habitats that lack light, such as caves, frequently rely on surface-derived carbon. Here we show, based on analysis of gut contents and stable isotope ratios of tissues (13C:12C and 15N:14N), that sulfur-oxidizing bacteria are directly consumed and assimilated by the fish Poecilia mexicana in a sulfide-rich cave stream in Tabasco state, Mexico. Our results provide evidence of a vertebrate deriving most of its organic carbon and nitrogen from in situ chemoautotrophic production, and reveals the importance of alternative energy production sources supporting animals in extreme environments.


Assuntos
Cadeia Alimentar , Sulfeto de Hidrogênio/metabolismo , Poecilia/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Animais , Cavernas , Comportamento Alimentar , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...