Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 63 Suppl 3: S126-S137, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971024

RESUMO

BACKGROUND: Cold-stored platelets are increasingly being used to treat bleeding. Differences in manufacturing processes and storage solutions can affect platelet quality and may influence the shelf life of cold-stored platelets. PAS-E and PAS-F are approved platelet additive solutions (PAS) in Europe and Australia, or the United States respectively. Comparative data are required to facilitate international transferability of laboratory and clinical data. STUDY DESIGN AND METHODS: Single apheresis platelets from matched donors (n = 8) were collected using the Trima apheresis platform and resuspended in either 40% plasma/60% PAS-E or 40% plasma/60% PAS-F. In a secondary study, platelets in PAS-F were supplemented with sodium citrate, to match the concentration in PAS-E. Components were refrigerated (2-6°C) and tested over 21 days. RESULTS: Cold-stored platelets in PAS-F had a lower pH, a greater propensity to form visible (and micro-) aggregates, and higher activation markers compared to PAS-E. These differences were most pronounced during extended storage (14-21 days). While the functional capacity of cold-stored platelets was similar, the PAS-F group displayed minor improvements in ADP-induced aggregation and TEG parameters (R-time, angle). Supplementation of PAS-F with 11 mM sodium citrate improved the platelet content, maintained the pH above specifications and prevented aggregate formation. DISCUSSION: In vitro parameters were similar during short-term cold storage of platelets in PAS-E and PAS-F. Storage in PAS-F beyond 14 days resulted in poorer metabolic and activation parameters. However, the functional capacity was maintained, or even enhanced. The presence of sodium citrate may be an important constituent in PAS for extended cold storage of platelets.


Assuntos
Plaquetas , Plaquetoferese , Humanos , Plaquetas/metabolismo , Plaquetoferese/métodos , Citrato de Sódio , Preservação de Sangue/métodos , Soluções
2.
Transfusion ; 62 Suppl 1: S43-S52, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748661

RESUMO

BACKGROUND: Platelet refrigeration (cold storage) provides the advantages of an extended shelf life and reduces the risk of bacterial growth, compared to platelets stored at room temperature (RT). However, processing modifications, such as irradiation, may further improve the safety and/or alter the quality of cold-stored platelets. Platelet components are irradiated to prevent transfusion-associated graft versus host disease (TA-GvHD) in high-risk patients; and while irradiation has little effect on the quality of RT-stored platelet components, there is no data assessing the effect irradiation has following cold storage. STUDY DESIGN AND METHODS: Triple-dose apheresis platelets were collected in 40% plasma/60% PAS-E, using the TRIMA apheresis platform, and refrigerated (2-6°C) within 8 h of collection. On day 2, one of each component was gamma or X-ray irradiated or remained non-irradiated. Platelets were tested over 21 days. RESULTS: The platelet concentration decreased by approximately 20% in all groups during 21 days of storage (p > .05). Irradiation (gamma or X-ray) did not affect platelet metabolism, and the pH was maintained above the minimum specification (>6.4) for 21 days. The surface phenotype and the composition of the supernatant was similar in non-irradiated and irradiated platelets, regardless of the source of radiation. Functional responses (aggregation and clot formation) were not affected by irradiation. DISCUSSION: Gamma and X-ray irradiation do not affect the in vitro quality of platelet components stored in the cold for up to 21 days. This demonstrates the acceptability of irradiating cold-stored platelets, which has the potential to improve their safety for at-risk patient cohorts.


Assuntos
Remoção de Componentes Sanguíneos , Preservação de Sangue , Plaquetas/metabolismo , Testes de Função Plaquetária , Raios X
3.
Transfusion ; 61 Suppl 1: S58-S67, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269458

RESUMO

BACKGROUND: Refrigeration, or cold-storage, of platelets may be beneficial to extend the limited shelf-life of conventionally stored platelets and support transfusion protocols in rural and military areas. The aim of this study was to compare the morphologic, metabolic, and functional aspects of apheresis platelets stored at room-temperature (RT) or cold conditions, in either plasma or supplemented with platelet additive solution (PAS). STUDY DESIGN AND METHODS: Double-dose apheresis platelets were collected in either 100% plasma or 40% plasma/60% PAS-E using the Trima apheresis platform. One component from each group was either stored at RT (20-24°C) or refrigerated (2-6°C). Platelets were tested over a 21-day period. RESULTS: The platelet concentration decreased by approximately 30% in all groups during 21 days of storage (p > .05). Cold-storage reduced glycolytic metabolism, and the pH was maintained above the minimum specification (>6.4) for 21 days only when platelets were stored in PAS. The surface phenotype and the composition of the supernatant were differentially affected by temperature and storage solution. Functional responses (aggregation, agonist-induced receptor activation, clotting time) were improved during cold-storage, and the influence of residual plasma was assay dependent. CONCLUSION: In vitro platelet quality is differentially affected by storage time, temperature, and solution. Cold-storage, particularly in PAS, better maintains key metabolic, phenotypic, and functional parameters during prolonged storage.


Assuntos
Plaquetas/citologia , Preservação de Sangue/métodos , Plaquetas/metabolismo , Temperatura Baixa , Humanos , Testes de Função Plaquetária , Plaquetoferese , Refrigeração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...