Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163822

RESUMO

Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the blood-brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cell's ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias
2.
Neurooncol Adv ; 3(1): vdab175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993481

RESUMO

BACKGROUND: The prognosis of patients with brain metastases (BM) is poor despite advances in our understanding of the underlying pathophysiology. The high incidence of thrombotic complications defines tumor progression and the high mortality rate. We, therefore, postulated that von Willebrand factor (VWF) promotes BM via its ability to induce platelet aggregation and thrombosis. METHODS: We measured the abundance of VWF in the blood and intravascular platelet aggregates of patients with BM, and determined the specific contribution of endothelial and platelet-derived VWF using in vitro models and microfluidics. The relevance for the brain metastatic cascade in vivo was demonstrated in ret transgenic mice, which spontaneously develop BM, and by the intracardiac injection of melanoma cells. RESULTS: Higher levels of plasma VWF in patients with BM were associated with enhanced intraluminal VWF fiber formation and platelet aggregation in the metastatic tissue and peritumoral regions. Platelet activation triggered the formation of VWF multimers, promoting platelet aggregation and activation, in turn enhancing tumor invasiveness. The absence of VWF in platelets, or the blocking of platelet activation, abolished platelet aggregation, and reduced tumor cell transmigration. Anticoagulation and platelet inhibition consistently reduced the number of BM in preclinical animal models. CONCLUSIONS: Our data indicate that platelet-derived VWF is involved in cerebral clot formation and in metastatic growth of melanoma in the brain. Targeting platelet activation with low-molecular-weight heparins represents a promising therapeutic approach to prevent melanoma BM.

3.
Mol Cancer Res ; 18(7): 1099-1109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234826

RESUMO

Cancer-related venous thromboembolisms (VTE) are associated with metastasis and reduced survival in patients with urothelial cancer of the bladder. Although previous reports suggest the contribution of tissue factor and podoplanin, the mechanistic linkage between VTE and bladder cancer cell-derived molecules is unknown. Therefore, we compared distinct procoagulant pathways in four different cell lines. In vitro findings were further confirmed by microfluidic experiments mimicking the pathophysiology of tumor blood vessels and in tissue samples of patients with bladder cancer by transcriptome analysis and immunohistology. In vitro and microfluidic experiments identified bladder cancer-derived VEGF-A as highly procoagulant because it promoted the release of von Willebrand factor (VWF) from endothelial cells and thus platelet aggregation. In tissue sections from patients with bladder cancer, we found that VWF-mediated blood vessel occlusions were associated with a poor outcome. Transcriptome data further indicate that elevated expression levels of enzymes modulating VEGF-A availability were significantly connected to a decreased survival in patients with bladder cancer. In comparison with previously postulated molecular players, we identified tumor cell-derived VEGF-A and endothelial VWF as procoagulant mediators in bladder cancer. Therapeutic strategies that prevent the VEGF-A-mediated release of VWF may reduce tumor-associated hypercoagulation and metastasis in patients with bladder cancer. IMPLICATIONS: We identified the VEGF-A-mediated release of VWF from endothelial cells to be associated with bladder cancer progression.


Assuntos
Carcinoma de Células de Transição/metabolismo , Células Endoteliais/citologia , Neoplasias da Bexiga Urinária/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Progressão da Doença , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas Analíticas Microfluídicas , Metástase Neoplásica , Proteômica , Neoplasias da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA