Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Annu Rev Pathol ; 18: 95-121, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36100231

RESUMO

Parkinson's disease (PD) is clinically, pathologically, and genetically heterogeneous, resisting distillation to a single, cohesive disorder. Instead, each affected individual develops a virtually unique form of Parkinson's syndrome. Clinical manifestations consist of variable motor and nonmotor features, and myriad overlaps are recognized with other neurodegenerative conditions. Although most commonly characterized by alpha-synuclein protein pathology throughout the central and peripheral nervous systems, the distribution varies and other pathologies commonly modify PD or trigger similar manifestations. Nearly all PD is genetically influenced. More than 100 genes or genetic loci have been identified, and most cases likely arise from interactions among many common and rare genetic variants. Despite its complex architecture, insights from experimental genetic dissection coalesce to reveal unifying biological themes, including synaptic, lysosomal, mitochondrial, andimmune-mediated mechanisms of pathogenesis. This emerging understanding of Parkinson's syndrome, coupled with advances in biomarkers and targeted therapies, presages successful precision medicine strategies.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Mitocôndrias/metabolismo , Mutação
2.
Ann Clin Transl Neurol ; 9(8): 1276-1288, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871307

RESUMO

OBJECTIVE: This study delineates the clinical and molecular spectrum of ANKLE2-related microcephaly (MIC), as well as highlights shared pathological mechanisms between ANKLE2 and the Zika virus. METHODS: We identified 12 individuals with MIC and variants in ANKLE2 with a broad range of features. Probands underwent thorough phenotypic evaluations, developmental assessments, and anthropometric measurements. Brain imaging studies were systematically reviewed for developmental abnormalities. We functionally interrogated a subset of identified ANKLE2 variants in Drosophila melanogaster. RESULTS: All individuals had MIC (z-score ≤ -3), including nine with congenital MIC. We identified a broad range of brain abnormalities including simplified cortical gyral pattern, full or partial callosal agenesis, increased extra-axial spaces, hypomyelination, cerebellar vermis hypoplasia, and enlarged cisterna magna. All probands had developmental delays in at least one domain, with speech and language delays being the most common. Six probands had skin findings characteristic of ANKLE2 including hyper- and hypopigmented macules. Only one individual had scalp rugae. Functional characterization in Drosophila recapitulated the human MIC phenotype. Of the four variants tested, p.Val229Gly, p.Arg236*, and p.Arg536Cys acted as partial-loss-of-function variants, whereas the c.1421-1G>C splicing variant demonstrated a strong loss-of-function effect. INTERPRETATION: Deleterious variants in the ANKLE2 gene cause a unique MIC syndrome characterized by congenital or postnatal MIC, a broad range of structural brain abnormalities, and skin pigmentary changes. Thorough functional characterization has identified shared pathogenic mechanisms between ANKLE2-related MIC and congenital Zika virus infection. This study further highlights the importance of a thorough diagnostic evaluation including molecular diagnostic testing in individuals with MIC.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Infecção por Zika virus , Zika virus , Animais , Drosophila melanogaster , Humanos , Microcefalia/genética , Síndrome , Zika virus/genética , Infecção por Zika virus/congênito , Infecção por Zika virus/diagnóstico
3.
Neurol Genet ; 8(4): e200002, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35747619

RESUMO

Background and Objectives: Genetic variants affect both Parkinson disease (PD) risk and manifestations. Although genetic information is of potential interest to patients and clinicians, genetic testing is rarely performed during routine PD clinical care. The goal of this study was to examine interest in comprehensive genetic testing among patients with PD and document reactions to possible findings from genome sequencing in 2 academic movement disorder clinics. Methods: In 203 subjects with PD (age = 63 years, 67% male), genome sequencing was performed and filtered using a custom panel, including 49 genes associated with PD, parkinsonism, or related disorders, as well as a 90-variant PD genetic risk score. Based on the results, 231 patients (age = 67 years, 63% male) were surveyed on interest in genetic testing and responses to vignettes covering (1) familial risk of PD (LRRK2); (2) risk of PD dementia (GBA); (3) PD genetic risk score; and (4) secondary, medically actionable variants (BRCA1). Results: Genome sequencing revealed a LRRK2 variant in 3% and a GBA risk variant in 10% of our clinical sample. The genetic risk score was normally distributed, identifying 41 subjects with a high risk of PD. Medically actionable findings were discovered in 2 subjects (1%). In our survey, the majority (82%) responded that they would share a LRRK2 variant with relatives. Most registered unchanged or increased interest in testing when confronted with a potential risk for dementia or medically actionable findings, and most (75%) expressed interest in learning their PD genetic risk score. Discussion: Our results highlight broad interest in comprehensive genetic testing among patients with PD and may facilitate integration of genome sequencing in clinical practice.

4.
Neurol Genet ; 6(5): e498, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802956

RESUMO

OBJECTIVE: To determine how single nucleotide variants (SNVs) and copy number variants (CNVs) contribute to molecular diagnosis in familial Parkinson disease (PD), we integrated exome sequencing (ES) and genome-wide array-based comparative genomic hybridization (aCGH) and further probed CNV structure to reveal mutational mechanisms. METHODS: We performed ES on 110 subjects with PD and a positive family history; 99 subjects were also evaluated using genome-wide aCGH. We interrogated ES and aCGH data for pathogenic SNVs and CNVs at Mendelian PD gene loci. We confirmed SNVs via Sanger sequencing and further characterized CNVs with custom-designed high-density aCGH, droplet digital PCR, and breakpoint sequencing. RESULTS: Using ES, we discovered individuals with known pathogenic SNVs in GBA (p.Glu365Lys, p.Thr408Met, p.Asn409Ser, and p.Leu483Pro) and LRRK2 (p.Arg1441Gly and p.Gly2019Ser). Two subjects were each double heterozygotes for variants in GBA and LRRK2. Based on aCGH, we additionally discovered cases with an SNCA duplication and heterozygous intragenic GBA deletion. Five additional subjects harbored both SNVs (p.Asn52Metfs*29, p.Thr240Met, p.Pro437Leu, and p.Trp453*) and likely disrupting CNVs at the PRKN locus, consistent with compound heterozygosity. In nearly all cases, breakpoint sequencing revealed microhomology, a mutational signature consistent with CNV formation due to DNA replication errors. CONCLUSIONS: Integrated ES and aCGH yielded a genetic diagnosis in 19.3% of our familial PD cohort. Our analyses highlight potential mechanisms for SNCA and PRKN CNV formation, uncover multilocus pathogenic variation, and identify novel SNVs and CNVs for further investigation as potential PD risk alleles.

5.
Hum Mutat ; 41(10): 1738-1744, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32643838

RESUMO

Congenital heart defects and skeletal malformations syndrome (CHDSKM) is a rare autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. CHDSKM is caused by germline mutations in ABL1. To date, three variants have been in association with CHDSKM. In this study, we describe three de novo missense variants, c.407C>T (p.Thr136Met), c.746C>T (p.Pro249Leu), and c.1573G>A (p.Val525Met), and one recurrent variant, c.1066G>A (p.Ala356Thr), in six patients, thereby expanding the phenotypic spectrum of CHDSKM to include hearing impairment, lipodystrophy-like features, renal hypoplasia, and distinct ocular abnormalities. Functional investigation of the three novel variants showed an increased ABL1 kinase activity. The cardiac findings in additional patients with p.Ala356Thr contribute to the accumulating evidence that patients carrying either one of the recurrent variants, p.Tyr245Cys and p.Ala356Thr, have a high incidence of cardiac abnormalities. The phenotypic expansion has implications for the clinical diagnosis of CHDSKM in patients with germline ABL1 variants.


Assuntos
Anormalidades Múltiplas , Cardiopatias Congênitas , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Células Germinativas , Cardiopatias Congênitas/genética , Humanos , Fenótipo , Síndrome
6.
Artigo em Inglês | MEDLINE | ID: mdl-30850373

RESUMO

DNM1L encodes a GTPase of the dynamin superfamily, which plays a crucial role in mitochondrial and peroxisomal fission. Pathogenic variants affecting the middle domain and the GTPase domain of DNM1L have been implicated in encephalopathy because of defective mitochondrial and peroxisomal fission 1 (EMPF1, MIM #614388). Patients show variable phenotypes ranging from severe hypotonia leading to death in the neonatal period to developmental delay/regression, with or without seizures. Familial pathogenic variants in the GTPase domain have also been associated with isolated optic atrophy. We present a 27-yr-old woman with static encephalopathy, a history of seizures, and nystagmus, in whom a novel de novo heterozygous variant was detected in the GTPase effector domain (GED) of DNM1L (c.2072A>G, p.Tyr691Cys). Functional studies in Drosophila demonstrate large, abnormally distributed peroxisomes and mitochondria, an effect very similar to that of middle domain missense alleles observed in pediatric subjects with EMPF1. To our knowledge, not only is this the first report of a disease-causing variant in the GED domain in humans, but this is also the oldest living individual reported with EMPF1. Longitudinal data of this kind helps to expand our knowledge of the natural history of a growing list of DNM1L-related disorders.


Assuntos
Encefalopatias/diagnóstico , Encefalopatias/genética , Dinaminas/genética , Convulsões/genética , Adulto , Alelos , Encefalopatias/patologia , Feminino , GTP Fosfo-Hidrolases/genética , Heterozigoto , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Músculos/patologia , Mutação de Sentido Incorreto , Peroxissomos/genética , Peroxissomos/patologia , Convulsões/patologia
8.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100089

RESUMO

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Deficiência Intelectual/genética , Mutação/genética , Animais , Encéfalo/patologia , Linhagem Celular , Exoma/genética , Feminino , Ácido Glutâmico/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fosforilação/genética , Transdução de Sinais/genética
9.
Brain ; 140(12): 3191-3203, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140481

RESUMO

Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The sequence kernel association test was used to interrogate variant burden among 54 lysosomal storage disorder genes, leveraging whole exome sequencing data from 1156 Parkinson's disease cases and 1679 control subjects. We discovered a significant burden of rare, likely damaging lysosomal storage disorder gene variants in association with Parkinson's disease risk. The association signal was robust to the exclusion of GBA, and consistent results were obtained in two independent replication cohorts, including 436 cases and 169 controls with whole exome sequencing and an additional 6713 cases and 5964 controls with exome-wide genotyping. In secondary analyses designed to highlight the specific genes driving the aggregate signal, we confirmed associations at the GBA and SMPD1 loci and newly implicate CTSD, SLC17A5, and ASAH1 as candidate Parkinson's disease susceptibility genes. In our discovery cohort, the majority of Parkinson's disease cases (56%) have at least one putative damaging variant in a lysosomal storage disorder gene, and 21% carry multiple alleles. Our results highlight several promising new susceptibility loci and reinforce the importance of lysosomal mechanisms in Parkinson's disease pathogenesis. We suggest that multiple genetic hits may act in combination to degrade lysosomal function, enhancing Parkinson's disease susceptibility.


Assuntos
Ceramidase Ácida/genética , Catepsina D/genética , Glucosilceramidase/genética , Transportadores de Ânions Orgânicos/genética , Doença de Parkinson/genética , Esfingomielina Fosfodiesterase/genética , Simportadores/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Exoma , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Masculino , Pessoa de Meia-Idade , Mutação
10.
Hum Mol Genet ; 25(9): 1846-56, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26931468

RESUMO

Defects in organelle dynamics underlie a number of human degenerative disorders, and whole exome sequencing (WES) is a powerful tool for studying genetic changes that affect the cellular machinery. WES may uncover variants of unknown significance (VUS) that require functional validation. Previously, a pathogenic de novo variant in the middle domain of DNM1L (p.A395D) was identified in a single patient with a lethal defect of mitochondrial and peroxisomal fission. We identified two additional patients with infantile encephalopathy and partially overlapping clinical features, each with a novel VUS in the middle domain of DNM1L (p.G350R and p.E379K). To evaluate pathogenicity, we generated transgenic Drosophila expressing wild-type or variant DNM1L. We find that human wild-type DNM1L rescues the lethality as well as specific phenotypes associated with the loss of Drp1 in Drosophila. Neither the p.A395D variant nor the novel variant p.G350R rescue lethality or other phenotypes. Moreover, overexpression of p.A395D and p.G350R in Drosophila neurons, salivary gland and muscle strikingly altered peroxisomal and mitochondrial morphology. In contrast, the other novel variant (p.E379K) rescued lethality and did not affect organelle morphology, although it was associated with a subtle mitochondrial trafficking defect in an in vivo assay. Interestingly, the patient with the p.E379K variant also has a de novo VUS in pyruvate dehydrogenase 1 (PDHA1) affecting the same amino acid (G150) as another case of PDHA1 deficiency suggesting the PDHA1 variant may be pathogenic. In summary, detailed clinical evaluation and WES with functional studies in Drosophila can distinguish different functional consequences of newly-described DNM1L alleles.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto/genética , Peroxissomos/patologia , Espasmos Infantis/genética , Sequência de Aminoácidos , Animais , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dinaminas , Exoma/genética , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Linhagem , Peroxissomos/genética , Peroxissomos/metabolismo , Fenótipo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Espasmos Infantis/patologia
11.
JAMA Neurol ; 73(1): 68-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595808

RESUMO

IMPORTANCE: Parkinson disease (PD) is a progressive neurodegenerative disease for which susceptibility is linked to genetic and environmental risk factors. OBJECTIVE: To identify genetic variants contributing to disease risk in familial PD. DESIGN, SETTING, AND PARTICIPANTS: A 2-stage study design that included a discovery cohort of families with PD and a replication cohort of familial probands was used. In the discovery cohort, rare exonic variants that segregated in multiple affected individuals in a family and were predicted to be conserved or damaging were retained. Genes with retained variants were prioritized if expressed in the brain and located within PD-relevant pathways. Genes in which prioritized variants were observed in at least 4 families were selected as candidate genes for replication in the replication cohort. The setting was among individuals with familial PD enrolled from academic movement disorder specialty clinics across the United States. All participants had a family history of PD. MAIN OUTCOMES AND MEASURES: Identification of genes containing rare, likely deleterious, genetic variants in individuals with familial PD using a 2-stage exome sequencing study design. RESULTS: The 93 individuals from 32 families in the discovery cohort (49.5% [46 of 93] female) had a mean (SD) age at onset of 61.8 (10.0) years. The 49 individuals with familial PD in the replication cohort (32.6% [16 of 49] female) had a mean (SD) age at onset of 50.1 (15.7) years. Discovery cohort recruitment dates were 1999 to 2009, and replication cohort recruitment dates were 2003 to 2014. Data analysis dates were 2011 to 2015. Three genes containing a total of 13 rare and potentially damaging variants were prioritized in the discovery cohort. Two of these genes (TNK2 and TNR) also had rare variants that were predicted to be damaging in the replication cohort. All 9 variants identified in the 2 replicated genes in 12 families across the discovery and replication cohorts were confirmed via Sanger sequencing. CONCLUSIONS AND RELEVANCE: TNK2 and TNR harbored rare, likely deleterious, variants in individuals having familial PD, with similar findings in an independent cohort. To our knowledge, these genes have not been previously associated with PD, although they have been linked to critical neuronal functions. Further studies are required to confirm a potential role for these genes in the pathogenesis of PD.


Assuntos
Exoma/genética , Transtornos Parkinsonianos/diagnóstico , Transtornos Parkinsonianos/genética , Proteínas Tirosina Quinases/genética , Análise de Sequência de DNA/métodos , Tenascina/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Neurosci ; 29(18): 5768-83, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420245

RESUMO

Myelin-associated glycoprotein (MAG) is a sialic acid-binding Ig-family lectin that functions in neuronal growth inhibition and stabilization of axon-glia interactions. The ectodomain of MAG is comprised of five Ig-like domains and uses neuronal cell-type-specific mechanisms to signal growth inhibition. We show that the first three Ig-like domains of MAG bind with high affinity and in a sialic acid-dependent manner to the Nogo-66 receptor-1 (NgR1) and its homolog NgR2. Domains Ig3-Ig5 of MAG are sufficient to inhibit neurite outgrowth but fail to associate with NgR1 or NgR2. Nogo receptors are sialoglycoproteins comprised of 8.5 canonical leucine-rich repeats (LRR) flanked by LRR N-terminal (NT) and C-terminal (CT)-cap domains. The LRR cluster is connected through a stalk region to a membrane lipid anchor. The CT-cap domain and stalk region of NgR2, but not NgR1, are sufficient for MAG binding, and when expressed in neurons, exhibit constitutive growth inhibitory activity. The LRR cluster of NgR1 supports binding of Nogo-66, OMgp, and MAG. Deletion of disulfide loop Cys(309)-Cys(336) of NgR1 selectively increases its affinity for Nogo-66 and OMgp. A chimeric Nogo receptor variant (NgR(OMNI)) in which Cys(309)-Cys(336) is deleted and followed by a 13 aa MAG-binding motif of the NgR2 stalk, shows superior binding of OMgp, Nogo-66, and MAG compared with wild-type NgR1 or NgR2. Soluble NgR(OMNI) (NgR(OMNI)-Fc) binds strongly to membrane-bound inhibitors and promotes neurite outgrowth on both MAG and CNS myelin substrates. Thus, NgR(OMNI)-Fc may offer therapeutic opportunities following nervous system injury or disease where myelin inhibits neuronal regeneration.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas da Mielina/antagonistas & inibidores , Glicoproteína Associada a Mielina/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação/genética , Linhagem Celular Transformada , Chlorocebus aethiops , Eletroforese em Gel Bidimensional/instrumentação , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas Ligadas por GPI , Humanos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/genética , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Receptor Nogo 1 , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Deleção de Sequência/genética , Transfecção/métodos
13.
J Neurosci ; 28(11): 2753-65, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18337405

RESUMO

In the mature nervous system, changes in synaptic strength correlate with changes in neuronal structure. Members of the Nogo-66 receptor family have been implicated in regulating neuronal morphology. Nogo-66 receptor 1 (NgR1) supports binding of the myelin inhibitors Nogo-A, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), and is important for growth cone collapse in response to acutely presented inhibitors in vitro. After injury to the corticospinal tract, NgR1 limits axon collateral sprouting but is not important for blocking long-distance regenerative growth in vivo. Here, we report on a novel interaction between NgR1 and select members of the fibroblast growth factor (FGF) family. FGF1 and FGF2 bind directly and with high affinity to NgR1 but not to NgR2 or NgR3. In primary cortical neurons, ectopic NgR1 inhibits FGF2-elicited axonal branching. Loss of NgR1 results in altered spine morphologies along apical dendrites of hippocampal CA1 neurons in vivo. Analysis of synaptosomal fractions revealed that NgR1 is enriched synaptically in the hippocampus. Physiological studies at Schaffer collateral-CA1 synapses uncovered a synaptic function for NgR1. Loss of NgR1 leads to FGF2-dependent enhancement of long-term potentiation (LTP) without altering basal synaptic transmission or short-term plasticity. NgR1 and FGF receptor 1 (FGFR1) are colocalized to synapses, and mechanistic studies revealed that FGFR kinase activity is necessary for FGF2-elicited enhancement of hippocampal LTP in NgR1 mutants. In addition, loss of NgR1 attenuates long-term depression of synaptic transmission at Schaffer collateral-CA1 synapses. Together, our findings establish that physiological NgR1 signaling regulates activity-dependent synaptic strength and uncover neuronal NgR1 as a regulator of synaptic plasticity.


Assuntos
Espinhas Dendríticas/fisiologia , Receptores de Superfície Celular/fisiologia , Sinapses/fisiologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Ligadas por GPI , Humanos , Camundongos , Camundongos Mutantes , Receptor Nogo 2 , Ligação Proteica/fisiologia , Ratos , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...