Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771086

RESUMO

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Assuntos
Migração Animal , Mudança Climática , Comportamento de Nidação , Estações do Ano , Animais , Regiões Árticas , Migração Animal/fisiologia , Feminino , Charadriiformes/fisiologia , Reprodução
2.
Ecotoxicology ; 32(8): 1062-1083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37874523

RESUMO

Mercury (Hg) pollution remains a concern to Arctic ecosystems, due to long-range transport from southern industrial regions and melting permafrost and glaciers. The objective of this study was to identify intrinsic, extrinsic, and temporal factors influencing Hg concentrations in Arctic-breeding shorebirds and highlight regions and species at greatest risk of Hg exposure. We analyzed 1094 blood and 1384 feather samples from 12 shorebird species breeding at nine sites across the North American Arctic during 2012 and 2013. Blood Hg concentrations, which reflect Hg exposure in the local area in individual shorebirds: 1) ranged from 0.01-3.52 µg/g ww, with an overall mean of 0.30 ± 0.27 µg/g ww; 2) were influenced by species and study site, but not sampling year, with birds sampled near Utqiagvik, AK, having the highest concentrations; and 3) were influenced by foraging habitat at some sites. Feather Hg concentrations, which reflected Hg exposure from the wintering grounds: 1) ranged from 0.07-12.14 µg/g fw in individuals, with an overall mean of 1.14 ± 1.18 µg/g fw; and 2) were influenced by species and year. Most Arctic-breeding shorebirds had blood and feather Hg concentrations at levels where no adverse effects of exposure were predicted, though some individuals sampled near Utqiagvik had Hg levels that would be considered of concern. Overall, these data increase our understanding of how Hg is distributed in the various shorebird breeding areas of the Arctic, what factors predispose Arctic-breeding shorebirds to Hg exposure, and lay the foundation for future monitoring efforts.


Assuntos
Monitoramento Ambiental , Mercúrio , Humanos , Animais , Ecossistema , Aves , Mercúrio/análise , Cruzamento
3.
Environ Toxicol Chem ; 42(11): 2329-2335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477488

RESUMO

Per- and polyfluoroalkyl substances (PFAS) and mercury (Hg) are harmful compounds that are widely present in the environment, partly due to spills and atmospheric pollution. The presence of PFAS and Hg in the tissues of animals that are harvested by rural and Indigenous Alaskans is of great concern, yet fish in Arctic Alaska have not previously been assessed for concentrations of PFAS. Fish species of subsistence and recreational importance were collected from nearshore Beaufort and Chukchi Sea, Alaska habitats and assessed for PFAS and total mercury concentrations [THg]. We found multiple PFAS compounds present at low levels (<3 µg/kg) in the muscle tissue of inconnu, broad whitefish, Dolly Varden char, Arctic flounder, saffron cod, humpback whitefish, and least cisco. In addition, [THg] levels in these fish were well below levels triggering local fish consumption guidelines (<170 µg/kg). These initial results indicate no evidence of the Alaska Arctic nearshore fish species examined as an avenue of PFAS or Hg exposure to people who harvest them. However, sources and trends of these contaminants in the Arctic require further investigation. Environ Toxicol Chem 2023;42:2329-2335. © 2023 SETAC.


Assuntos
Fluorocarbonos , Mercúrio , Salmonidae , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Alaska , Regiões Árticas , Monitoramento Ambiental , Poluentes Químicos da Água/análise
4.
Polar Biol ; 45(9): 1465-1482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090964

RESUMO

Wolverines (Gulo gulo) occupy most of the globe's Arctic tundra. Given the rapidly warming climate and expanding human activity in this biome, understanding wolverine ecology, and therefore the species' vulnerability to such changes, is increasingly important for developing research priorities and effective management strategies. Here, we review and synthesize knowledge of wolverines in the Arctic using both Western science sources and available Indigenous Knowledge (IK) to improve our understanding of wolverine ecology in the Arctic and better predict the species' susceptibility to change. To accomplish this, we update the pan-Arctic distribution map of wolverines to account for recent observations and then discuss resulting inference and uncertainties. We use these patterns to contextualize and discuss potential underlying drivers of distribution and population dynamics, drawing upon knowledge of food habits, habitat associations, and harvest, as well as studies of wolverine ecology elsewhere. We then identify four broad areas to prioritize conservation and research efforts: (1) Monitoring trends in population abundance, demographics, and distribution and the drivers thereof, (2) Evaluating and predicting wolverines' responses to ongoing climate change, particularly the consequences of reduced snow and sea ice, and shifts in prey availability, (3) Understanding wolverines' response to human development, including the possible impact of wintertime over-snow travel and seismic testing to reproductive denning, as well as vulnerability to hunting and trapping associated with increased human access, and (4) Ensuring that current and future harvest are sustainable. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-022-03079-4.

5.
Sci Total Environ ; 841: 156566, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697218

RESUMO

Arctic Indigenous Peoples are among the most exposed humans when it comes to foodborne mercury (Hg). In response, Hg monitoring and research have been on-going in the circumpolar Arctic since about 1991; this work has been mainly possible through the involvement of Arctic Indigenous Peoples. The present overview was initially conducted in the context of a broader assessment of Hg research organized by the Arctic Monitoring and Assessment Programme. This article provides examples of Indigenous Peoples' contributions to Hg monitoring and research in the Arctic, and discusses approaches that could be used, and improved upon, when carrying out future activities. Over 40 mercury projects conducted with/by Indigenous Peoples are identified for different circumpolar regions including the U.S., Canada, Greenland, Sweden, Finland, and Russia as well as instances where Indigenous Knowledge contributed to the understanding of Hg contamination in the Arctic. Perspectives and visions of future Hg research as well as recommendations are presented. The establishment of collaborative processes and partnership/co-production approaches with scientists and Indigenous Peoples, using good communication practices and transparency in research activities, are key to the success of research and monitoring activities in the Arctic. Sustainable funding for community-driven monitoring and research programs in Arctic countries would be beneficial and assist in developing more research/monitoring capacity and would promote a more holistic approach to understanding Hg in the Arctic. These activities should be well connected to circumpolar/international initiatives to ensure broader availability of the information and uptake in policy development.


Assuntos
Mercúrio , Regiões Árticas , Canadá , Groenlândia , Humanos , Povos Indígenas
6.
J Acoust Soc Am ; 150(3): 1883, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34598647

RESUMO

Rapid changes in the Arctic from shifting climate and human use patterns are affecting previously reported distributions and movements of marine mammals. The underwater soundscape, a key component of marine mammal habitats, is also changing. This study integrates acoustic data, collected at a site in the northern Bering Sea, with information on sound sources to quantify their occurrence throughout the year and identify deviations in conditions and dominant soundscape components. Predictive models are applied to explain variation in sound levels and to compare the relative contributions of various soundscape components. Levels across all octave bands were influenced most strongly by the variation in abiotic environment across seasons. The presence of commercial ships did not have a discernible effect on sound levels at this location and period of time. The occurrence of sources was compared to a second site, where we documented how higher levels of shipping changed that soundscape. This study demonstrated the value of acoustic monitoring to characterize the dominant acoustic features in a soundscape and the importance of preserving soundscapes based on dominant features rather than level of sound. Using a soundscape approach has relevance for protecting marine mammals and for the food security of Alaska Native communities that depend upon them.


Assuntos
Ruído , Som , Acústica , Animais , Ecossistema , Humanos , Navios
7.
Front Public Health ; 9: 627654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026707

RESUMO

The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.


Assuntos
Animais Selvagens , COVID-19 , Animais , Regiões Árticas , Ecossistema , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Estados Unidos , Zoonoses/epidemiologia
8.
Oecologia ; 195(4): 887-899, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33683443

RESUMO

Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects. This problem is acute for species that rely on particular attributes of the subnivean space, for example depth, thermal resistance, and structural stability, for key life-history processes like reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow evolution model to investigate how habitat selection of a species that uses the subnivean space, the wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled these snow properties at a 10 m spatial and a daily temporal resolution for 3 years, and used integrated step selection analyses of GPS collar data from 21 wolverines to determine how these snow properties influenced habitat selection and movement. We found that wolverines selected deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these snow properties are important to species that use the Arctic snowpack for subnivean resting sites and dens. We discuss the implications of these findings in the context of climate change impacts on subnivean species.


Assuntos
Ecossistema , Neve , Animais , Regiões Árticas , Estações do Ano , Tundra
10.
Mar Pollut Bull ; 157: 111283, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32475816

RESUMO

We measured spatial and temporal patterns of ambient noise in dynamic, relatively pristine Arctic marine habitats and evaluate the contributions of environmental and human noise sources. Long-term acoustic recorders were deployed around St. Lawrence Island and the Bering Strait region within key feeding and migratory corridors for protected species that are inherently important to Native Alaskan cultures. Over 3000 h of data from 14 recorders at nine sites were obtained from October 2014 to June 2017. Spatial and temporal ambient noise patterns were quantified with percentile statistics in 1/3rd-octave bands (0.02-8 kHz). Ice presence strongly influenced ambient noise by influencing the physical environment and presence of marine mammals. High variability in noise was observed within and between sites, largely as a function of ice presence and associated factors. Acute contributions of biological and anthropogenic sources to local ambient noise are compared to monthly averages, demonstrating how they influence Arctic soundscapes.


Assuntos
Acústica , Ruído , Animais , Regiões Árticas , Humanos , Ilhas , Estações do Ano
11.
Trans Am Fish Soc ; 147(6): 1167-1178, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38031575

RESUMO

Lagoons provide critical habitats for many fishes, including coregonine whitefishes, which are a mainstay in many subsistence fisheries of rural communities in Arctic Alaska. Despite their importance, little is known about the overwintering habits of whitefishes in Arctic Alaska due to the challenges associated with sampling during winter. We developed a habitat suitability (HS) model to understand the potential range of physical conditions that whitefishes experience during the Arctic winter, using three indicator lagoons that represent a range of environmental characteristics. The HS model was built using a three-step approach. First, remote sensing that uses interferometric synthetic aperture radar (InSAR) identified areas of floating and bottomfast ice. Second, through in-field ground-truthing, we confirmed the presence and quality of liquid water (water depth, temperature, and dissolved oxygen) beneath the ice cover. Third, we assessed the suitability of that liquid water as habitat for whitefishes based on published literature and expert interpretation of water quality parameters. InSAR determined that 0, 65.4, and 88.2% of the three lagoons were composed of floating ice corresponding with areas of liquid water beneath a layer of ice. The HS model indicated that all three lagoons had reduced suitability as whitefish habitat in winter than in summer due to the loss of habitat because of the presence of bottomfast ice and a reduction in the quality of liquid water due to cold temperatures, high salinities, and low dissolved oxygen levels. However, only the shallowest lagoon had lethal conditions and zero suitability as whitefish habitat. The methods outlined here provide a simple, cost-effective method to identify habitats that consistently provide critical winter habitat and integrate remote sensing in a HS model framework.

12.
J Environ Manage ; 91(1): 57-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19783356

RESUMO

Decision rules are the agreed-upon points at which specific management interventions are initiated. For marine mammal management under the U.S. Marine Mammal Protection Act (MMPA), decision rules are usually based on either a numeric population or biological-removal approach. However, for walrus and other ice-associated pinnipeds, the inability to reliably assess population numbers or biological removals highlights a significant gap in the MMPA, particularly when the Arctic environment is rapidly changing. We describe the MMPA's ecosystem-based management goals, and why managers have bypassed these goals in favor of an approach that depends upon numerical population assessment. We then revisit the statute's primary goals in light of current knowledge about the Pacific walrus ecosystem and new developments in environmental governance. We argue that to monitor and respond to changes in the walrus ecosystem, decision rules should be based on scientific criteria that depend less on the currently-impractical goal of accurately enumerating population size and trends, or removals from that population. Rather, managers should base decisions on ecological needs and observed ecological changes. To implement this approach would require an amendment to the MMPA that supports filling the gap in management with achievable decision rules. Alternatively, walrus and other ice-associated pinnipeds will remain largely unmanaged during a period of profound environmental change.


Assuntos
Conservação dos Recursos Naturais , Biologia Marinha , Morsas , Animais , Ecossistema
13.
Ecol Appl ; 18(2 Suppl): S148-56, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18494368

RESUMO

Native communities in the Bering and Chukchi seas have long relied on walrus for a multitude of nutritional, social, and cultural needs. Impacts to walrus in the past have resulted in profound consequences to these communities. For example, on St. Lawrence Island during the 1878-1880 "Great Famine" as many as 2000 people (> 90% of the island's population) starved after the walrus herds were decimated by Yankee whalers. Loss of walrus was further confounded by a wave of fatal contagion and difficult hunting conditions attributable to short-term climatic changes. Today, the ability of coastal hunters to access, harvest, transport, store, and utilize walrus is still affected by a dynamic suite of endogenous and exogenous factors, including ecological, social, economic, and political conditions. Impacts specifically as a result of changing climate will affect Native Alaskan hunters within the context of these diverse and sometimes global factors. The Eskimo Walrus Commission (EWC) works within a comanagement agreement with the U.S. Fish and Wildlife Service (USFWS) to address these challenges. However, the EWC's goals may differ from the USFWS within the current comanagement and policy context. Whereas the USFWS is primarily interested in walrus population health (assessed through estimates of population size and native harvest), EWC is primarily interested in a broader scope, encompassing the health of the human-walrus relationship. New scientific tools associated with the study and management of linked human-ecological systems may provide a framework within which to address these goals. Here we present an overview of the challenges, needs, and research relating to climate change that are of interest to the EWC and in particular, the sustained health of the human-walrus relationship.


Assuntos
Morsas , Animais , Clima , Humanos
14.
Am Nat ; 168 Suppl 6: S36-49, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17109327

RESUMO

In this article we extend the theory of community prediction by presenting seven hypotheses for predicting community structure in a directionally changing world. The first three address well-studied community responses to environmental and ecological change: ecological communities are most likely to exhibit threshold changes in structure when perturbations cause large changes in limiting soil or sediment resources, dominant or keystone species, or attributes of disturbance regime that influence community recruitment. Four additional hypotheses address social-ecological interactions and apply to both ecological communities and social-ecological systems. Human responsiveness to short-term and local costs and benefits often leads to human actions with unintended long-term impacts, particularly those that are far from the site of decision making or are geographically dispersed. Policies are usually based on past conditions of ecosystem services rather than expected future trends. Finally, institutions that strengthen negative feedbacks between human actions and social-ecological consequences can reduce human impacts through more responsive (and thus more effective) management of public ecosystem services. Because of the large role that humans play in modifying ecosystems and ecosystem services, it is particularly important to test and improve social-ecological hypotheses as a basis for shaping appropriate policies for long-term ecosystem resilience.


Assuntos
Biodiversidade , Alaska , Conservação dos Recursos Naturais , Incêndios , Cadeia Alimentar , Efeito Estufa , Atividades Humanas , Humanos , Formulação de Políticas , Dinâmica Populacional , Condições Sociais , Solo , Árvores/fisiologia
15.
Proc Natl Acad Sci U S A ; 103(45): 16637-43, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17008403

RESUMO

Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social-ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously.


Assuntos
Efeito Estufa , Árvores , Aclimatação , Alaska , Clima Frio , Ecossistema , Humanos , Política Pública , Meio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...