Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 68(7): 2016-2023, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986021

RESUMO

The protein precipitation (PP) of bovine serum albumin (BSA), lysozyme (LYS), and alfalfa leaf protein (ALF) by four procyanidin-rich condensed tannin (CT) samples in both 2-[N-morpholino]ethanesulfonic acid (MES) and a modified Goering-Van Soest (GVS) buffer is described. Purified CT samples examined included Vitis vinifera seed (mean degree of polymerization [mDP] 4.1, 16.5% galloylated), Tilia sp. flowers (B-type linkages, mDP 5.9), Vaccinium macrocarpon berries (mDP 8.7, 31.7% A-type linkages). and Trifolium pratense flowers (B-type linkages, mDP 12.3) and were characterized by 2D NMR (>90% purity). In general, CTs precipitated ALF > LYS ≥ BSA. PP in GVS buffer was 1 to 2.25 times greater than that in MES buffer (25 °C). The GVS buffer system better reflects the results/conclusions from the literature on the impacts mDP, galloylation, and A-type linkages have on PP. Determinations of PP using the MES buffer at 37 °C indicated that some of these differences may be attributed to the temperature at which GVS buffer determinations are conducted. In vitro PP studies using the GVS buffer may offer better guidance when selecting CT-containing forages and amendments for ruminant feeding studies.


Assuntos
Biflavonoides/química , Catequina/química , Extratos Vegetais/química , Proteínas de Plantas/química , Proantocianidinas/química , Soroalbumina Bovina/química , Ração Animal/análise , Soluções Tampão , Precipitação Química , Medicago sativa/química , Muramidase/química , Tilia/química , Vaccinium macrocarpon/química , Vitis/química
2.
Molecules ; 23(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142930

RESUMO

Previous studies showed that a series of purified condensed tannins (CTs) from warm-season perennial legumes exhibited high variability in their modulation of methane production during in vitro rumen digestion. The molecular weight differences between these CTs did not provide correlation with either the in vitro CH4 production or the ability to precipitate bovine serum albumin. In an effort to delineate other structure-activity relationships from these methane abatement experiments, the structures of purified CTs from these legumes were assessed with a combination of methanolysis, quantitative thiolysis, ¹H-13C HSQC NMR spectroscopy and ultrahigh-resolution MALDI-TOF MS. The composition of these CTs is very diverse: procyanidin/prodelphinidin (PC/PD) ratios ranged from 98/2 to 2/98; cis/trans ratios ranged from 98/2 to 34/66; mean degrees of polymerization ranged from 6 to 39; and % galloylation ranged from 0 to 75%. No strong correlation was observed between methane production and the protein precipitation capabilities of the CT towards three different proteins (BSA, lysozyme, and alfalfa leaf protein) at ruminal pH. However, a strong non-linear correlation was observed for the inhibition of methane production versus the antioxidant activity in plant sample containing typical PC- and PD-type CTs. The modulation of methane production could not be correlated to the CT structure (PC/PD or cis/trans ratios and extent of galloylation). The most active plant in methane abatement was Acacia angustissima, which contained CT, presenting an unusual challenge as it was resistant to standard thiolytic degradation conditions and exhibited an atypical set of cross-peak signals in the 2D NMR. The MALDI analysis supported a 5-deoxy flavan-3-ol-based structure for the CT from this plant.


Assuntos
Acacia/química , Taninos/química , Fabaceae/química , Espectroscopia de Ressonância Magnética , Metano , Proantocianidinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...