Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 767, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536440

RESUMO

Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnetic spin textures can be imaged by probing the magnetic noise they locally produce via thermal populations of magnons. To this end, we perform nanoscale, all-optical relaxometry with a scanning quantum sensor based on a single nitrogen-vacancy (NV) defect in diamond. Magnetic noise is detected through an increase of the spin relaxation rate of the NV defect, which results in an overall reduction of its photoluminescence signal under continuous laser illumination. As a proof-of-concept, the efficiency of the method is demonstrated by imaging various spin textures in synthetic antiferromagnets, including domain walls, spin spirals and antiferromagnetic skyrmions. This imaging procedure could be extended to a large class of intrinsic antiferromagnets and opens up new opportunities for studying the physics of localized spin wave modes for magnonics.

2.
Nat Commun ; 11(1): 2400, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404882

RESUMO

Driven non-linear resonators can display sharp resonances or even multistable behaviours amenable to induce strong enhancements of weak signals. Such enhancements can make use of the phenomenon of vibrational resonance, whereby a weak low-frequency signal applied to a bistable resonator can be amplified by driving the non-linear oscillator with another appropriately-adjusted non-resonant high-frequency field. Here we demonstrate experimentally and theoretically a significant resonant enhancement of a weak signal by use of a vibrational force, yet in a monostable system consisting of a driven nano-electromechanical nonlinear resonator. The oscillator is subjected to a strong quasi-resonant drive and to two additional tones: a weak signal at lower frequency and a non-resonant driving at an intermediate frequency. We analyse this phenomenon in terms of coherent nonlinear resonance manipulation. Our results illustrate a general mechanism which might have applications in the fields of microwave signal amplification or sensing for instance.

3.
Phys Rev Lett ; 119(23): 234101, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286702

RESUMO

Stochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude modulated, bistable systems. We show experimentally the emergence of phase stochastic resonance in the bidimensional response of a forced nanoelectromechanical membrane by evidencing the enhancement of a weak phase modulated signal thanks to the addition of phase noise. Based on a general forced Duffing oscillator model, we demonstrate experimentally and theoretically that phase noise acts multiplicatively, inducing important physical consequences. These results may open interesting prospects for phase noise metrology or coherent signal transmission applications in nanomechanical oscillators. Moreover, our approach, due to its general character, may apply to various systems.

4.
Light Sci Appl ; 6(1): e16190, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30167192

RESUMO

Light scattering by a two-dimensional photonic-crystal slab (PCS) can result in marked interference effects associated with Fano resonances. Such devices offer appealing alternatives to distributed Bragg reflectors and filters for various applications, such as optical wavelength and polarization filters, reflectors, semiconductor lasers, photodetectors, bio-sensors and non-linear optical components. Suspended PCS also have natural applications in the field of optomechanics, where the mechanical modes of a suspended slab interact via radiation pressure with the optical field of a high-finesse cavity. The reflectivity and transmission properties of a defect-free suspended PCS around normal incidence can be used to couple out-of-plane mechanical modes to an optical field by integrating it in a free-space cavity. Here we demonstrate the successful implementation of a PCS reflector on a high-tensile stress Si3N4 nanomembrane. We illustrate the physical process underlying the high reflectivity by measuring the photonic-crystal band diagram. Moreover, we introduce a clear theoretical description of the membrane scattering properties in the presence of optical losses. By embedding the PCS inside a high-finesse cavity, we fully characterize its optical properties. The spectrally, angular- and polarization-resolved measurements demonstrate the wide tunability of the membrane's reflectivity, from nearly 0 to 99.9470±0.0025%, and show that material absorption is not the main source of optical loss. Moreover, the cavity storage time demonstrated in this work exceeds the mechanical period of low-order mechanical drum modes. This so-called resolved-sideband condition is a prerequisite to achieve quantum control of the mechanical resonator with light.

5.
Sci Rep ; 5: 16526, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567535

RESUMO

Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrate arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling the optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for an unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the framework of optomechanically-driven signal-processing applications.

6.
Opt Lett ; 36(17): 3434-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21886235

RESUMO

We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...