Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38722342

RESUMO

This study aims to evaluate the antitrypanosomiasis activity of a synthetic dichloro-substituted aminochalcone via in vitro assays against infected cell cultures, as well as a theoretical characterization of pharmacokinetics and pharmacodynamics against the protein targets of the evolutionary cycle of T. cruzi. The in vitro evaluation of parasite proliferation inhibition was performed via cytotoxicity analysis on mammalian host cells, effect on epimastigote and trypomastigote forms, and cell death analysis, while computer simulations characterized the electronic structure of (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCl), the mechanism of action against the proteins of the evolutionary cycle of T. cruzi: Cruzain, Trypanothione reductase, TcGAPDH, and CYP51 by molecular docking and dynamics and predictive pharmacokinetics by MPO-based ADMET. The in vitro tests showed that the DCl LC50 in order of 178.9 ± 23.9 was similar to the BZN, evidencing the effectiveness of chalcone against Trypomastigotes. Molecular docking and dynamics simulations suggest that DCl acts on the active site of the CYP51 receptor, with hydrogen interactions that showed a high degree of occupation, establishing a stable complex with the target. MPO analysis and ADMET prediction tests suggest that the compound presents an alignment between permeability and hepatic clearance, although it presents low metabolic stability. Chalcone showed stable pharmacodynamics against the CYP51 target, but can form reactive metabolites from N-conjugation and C = C epoxidation, as an indication of controlled oral dose, although the estimated LD50 rate > 500 mg/kg is a indicative of low incidence of lethality by ingestion, constituting a promising therapeutic strategy.

2.
3 Biotech ; 14(5): 135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38665880

RESUMO

Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 ± 52 kJ/mol and - 304.812 ± 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 Å2) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with Papp values estimated at < 10 × 10-6 cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD50) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03978-9.

3.
Braz. arch. biol. technol ; 65: e22210032, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1364475

RESUMO

Abstract Zika fever is a viral infection of great relevance in public health, especially in tropic regions, in which there is a predominance of mosquitoes of the genus Aedes, vectors of the disease. Microcephaly in neonatal children and Guillain-Barré syndrome in adults can be caused by the action of the Zika virus (ZIKV). Non-structural proteins, such as NS2B, NS3 and NS5, are important pharmacological targets, due to their action in the life cycle. The absence of anti-Zika drugs raises new research, including prospecting for natural products. This work investigated the in silico antiviral activity of bixin and six other derived molecules against the Zika viral proteins NS2B-NS3 and NS5. The optimized structure was subjected to molecular docking to characterize the interaction between bixinoids and ZIKV non-structural proteins, where significant interactions were observed with amino acid residues in the catalytic site in each enzyme. These results suggest that bixin and ethyl bixin has the potential to interfere with the enzymatic activity of NS2B, NS3 and NS5, thus being an indication of being a promising anti-Zika agent.


Assuntos
Antivirais/uso terapêutico , Extratos Vegetais/uso terapêutico , Bixa orellana/uso terapêutico , Infecção por Zika virus/tratamento farmacológico , Fitoterapia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...