Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(2): 1221-1238, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36607408

RESUMO

Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Doença de Chagas/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Relação Estrutura-Atividade , Tripanossomicidas/uso terapêutico , Tripanossomicidas/farmacocinética
2.
RSC Med Chem ; 12(3): 384-393, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34041487

RESUMO

An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure-activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series.

3.
Cell Death Discov ; 6: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123582

RESUMO

Regulated necrosis or necroptosis, mediated by receptor-interacting kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like protein (MLKL), contributes to the pathogenesis of inflammatory, infectious and degenerative diseases. Recently identified necroptosis inhibitors display moderate specificity, suboptimal pharmacokinetics, off-target effects and toxicity, preventing these molecules from reaching the clinic. Here, we developed a cell-based high-throughput screening (HTS) cascade for the identification of small-molecule inhibitors of necroptosis. From the initial library of over 250,000 compounds, the primary screening phase identified 356 compounds that strongly inhibited TNF-α-induced necroptosis, but not apoptosis, in human and murine cell systems, with EC50 < 6.7 µM. From these, 251 compounds were tested for RIPK1 and/or RIPK3 kinase inhibitory activity; some were active and several have novel mechanisms of action. Based on specific chemical descriptors, 110 compounds proceeded into the secondary screening cascade, which then identified seven compounds with maximum ability to reduce MLKL activation, IC50 >100 µM, EC50 2.5-11.5 µM under long-term necroptosis execution in murine fibroblast L929 cells, and full protection from ATP depletion and membrane leakage in human and murine cells. As a proof of concept, compound SN-6109, with binding mode to RIPK1 similar to that of necrostatin-1, confirmed RIPK1 inhibitory activity and appropriate pharmacokinetic properties. SN-6109 was further tested in mice, showing efficacy against TNF-α-induced systemic inflammatory response syndrome. In conclusion, a phenotypic-driven HTS cascade promptly identified robust necroptosis inhibitors with in vivo activity, currently undergoing further medicinal chemistry optimization. Notably, the novel hits highlight the opportunity to identify new molecular mechanisms of action in necroptosis.

4.
Sci Data ; 6(1): 286, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772255

RESUMO

The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface (<20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.

5.
J Labelled Comp Radiopharm ; 60(4): 221-229, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28183147

RESUMO

1ß-hydroxydeoxycholic acid in unlabeled and stable isotope labeled forms was required for use as a biomarker for Cytochrome P450 3A4/5 activity. A lengthy synthesis was undertaken to deliver the unlabeled compound and in the process, to develop a route to the deuterium labeled compound. The synthesis of the unlabeled compound was completed but in a very low yield. Concurrent with the synthetic approach, a biosynthetic route was pursued and this approach proved to be much more rapid and afforded the compound in both unlabeled and deuterium labeled forms in a 1-step oxidation from deoxycholic acid and [D4 ]deoxycholic acid, respectively.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Deutério/química , Técnicas de Química Sintética , Ácido Quenodesoxicólico/síntese química , Ácido Quenodesoxicólico/química , Citocromo P-450 CYP3A/metabolismo , Marcação por Isótopo
6.
Chem Phys Lipids ; 142(1-2): 111-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16690044

RESUMO

Tuberculostearic acid (10R-methyloctadecanoic acid) and its 10S-enantiomer were synthesised by a chiral pool strategy, in four steps from citronellyl bromide.


Assuntos
Ácidos Esteáricos/síntese química , Monoterpenos/química , Estereoisomerismo , Tuberculose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...