Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2313055, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38416868

RESUMO

Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.


Assuntos
Benzaldeídos , Lisina , Receptor 2 Toll-Like , Humanos , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo
2.
Respir Res ; 24(1): 303, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044426

RESUMO

BACKGROUND: Increased airway NLRP3 inflammasome-mediated IL-1ß responses may underpin severe neutrophilic asthma. However, whether increased inflammasome activation is unique to severe asthma, is a common feature of immune cells in all inflammatory types of severe asthma, and whether inflammasome activation can be therapeutically targeted in patients, remains unknown. OBJECTIVE: To investigate the activation and inhibition of inflammasome-mediated IL-1ß responses in immune cells from patients with asthma. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with non-severe (n = 59) and severe (n = 36 stable, n = 17 exacerbating) asthma and healthy subjects (n = 39). PBMCs were stimulated with nigericin or lipopolysaccharide (LPS) alone, or in combination (LPS + nigericin), with or without the NLRP3 inhibitor MCC950, and the effects on IL-1ß release were assessed. RESULTS: PBMCs from patients with non-severe or severe asthma produced more IL-1ß in response to nigericin than those from healthy subjects. PBMCs from patients with severe asthma released more IL-1ß in response to LPS + nigericin than those from non-severe asthma. Inflammasome-induced IL-1ß release from PBMCs from patients with severe asthma was not increased during exacerbation compared to when stable. Inflammasome-induced IL-1ß release was not different between male and female, or obese and non-obese patients and correlated with eosinophil and neutrophil numbers in the airways. MCC950 effectively suppressed LPS-, nigericin-, and LPS + nigericin-induced IL-1ß release from PBMCs from all groups. CONCLUSION: An increased ability for inflammasome priming and/or activation is a common feature of systemic immune cells in both severe and non-severe asthma, highlighting inflammasome inhibition as a universal therapy for different subtypes of disease.


Assuntos
Asma , Inflamassomos , Humanos , Masculino , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nigericina/farmacologia , Lipopolissacarídeos , Leucócitos Mononucleares , Interleucina-1beta , Asma/diagnóstico , Asma/tratamento farmacológico , Sulfonamidas
4.
Sci Transl Med ; 15(696): eadh0604, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196062

RESUMO

We have replicated our original finding of elevated cleaved caspase-1 in mouse brains and neuroprotection by an NLRP3 inflammasome inhibitor in two mouse models of Parkinson's disease.


Assuntos
Inflamassomos , Doença de Parkinson , Camundongos , Animais , alfa-Sinucleína , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson/patologia , Dopamina
5.
ACS Nano ; 17(9): 8680-8693, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102996

RESUMO

Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.


Assuntos
Isquemia Encefálica , Neuroblastoma , Traumatismo por Reperfusão , Embrião de Galinha , Ratos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Reperfusão
6.
J Biol Chem ; 298(10): 102453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063996

RESUMO

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Hidroximetil e Formil Transferases , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Animais , Humanos , Camundongos , Antifúngicos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Descoberta de Drogas , Inosina Monofosfato , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Purinas , Criptococose/metabolismo
7.
Sci Immunol ; 7(71): eabm1803, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594341

RESUMO

Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.


Assuntos
Toxinas Bacterianas , Proteínas Ligadas por GPI , Inflamassomos , Animais , Toxinas Bacterianas/metabolismo , Clostridium septicum/química , Proteínas Ligadas por GPI/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Inflamassomos/metabolismo , Mamíferos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse
8.
Proc Natl Acad Sci U S A ; 119(12): e2115857119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298334

RESUMO

SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.


Assuntos
Corpos Estranhos , Inflamassomos , Humanos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Próteses e Implantes
9.
Cardiovasc Res ; 118(13): 2778-2791, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34718444

RESUMO

AIMS: Targeting vascular inflammation represents a novel therapeutic approach to reduce complications of atherosclerosis. Neutralizing the pro-inflammatory cytokine interleukin-1ß (IL-1ß) using canakinumab, a monoclonal antibody, reduces the incidence of cardiovascular events in patients after myocardial infarction (MI). The biological basis for these beneficial effects remains incompletely understood. We sought to explore the mechanisms of IL-1ß-targeted therapies. METHODS AND RESULTS: In mice with early atherosclerosis (ApoE-/- mice on a high-cholesterol diet for 6 weeks), we found that 3 weeks of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)-inflammasome inhibition or anti-IL-1ß treatment (using either MCC950, an NLRP3-inflammasome inhibitor which blocks production and release of active IL-1ß, or a murine analogue of canakinumab) dampened accumulation of leucocytes in atherosclerotic aortas, which consequently resulted in slower progression of atherosclerosis. Causally, we found that endothelial cells from atherosclerotic aortas lowered expression of leucocyte chemoattractants and adhesion molecules upon NLRP3-inflammasome inhibition, indicating that NLRP3-inflammasome- and IL-1ß-targeted therapies reduced blood leucocyte recruitment to atherosclerotic aortas. In accord, adoptive transfer experiments revealed that anti-IL-1ß treatment mitigated blood myeloid cell uptake to atherosclerotic aortas. We further report that anti-IL-1ß treatment and NLRP3-inflammasome inhibition reduced inflammatory leucocyte supply by decreasing proliferation of bone marrow haematopoietic stem and progenitor cells, demonstrating that suppression of IL-1ß and the NLRP3-inflammasome lowered production of disease-propagating leucocytes. Using bone marrow reconstitution experiments, we observed that haematopoietic cell-specific NLRP3-inflammasome activity contributed to both enhanced recruitment and increased supply of blood inflammatory leucocytes. Further experiments that queried whether anti-IL-1ß treatment reduced vascular inflammation also in post-MI accelerated atherosclerosis documented the operation of convergent mechanisms (reduced supply and uptake of inflammatory leucocytes). In line with our pre-clinical findings, post-MI patients on canakinumab treatment showed reduced blood monocyte numbers. CONCLUSIONS: Our murine and human data reveal that anti-IL-1ß treatment and NLRP3-inflammasome inhibition dampened vascular inflammation and progression of atherosclerosis through reduced blood inflammatory leucocyte (i) supply and (ii) uptake into atherosclerotic aortas providing additional mechanistic insights into links between haematopoiesis and atherogenesis, and into the beneficial effects of NLRP3-inflammasome- and IL-1ß-targeted therapies.


Assuntos
Aterosclerose , Inflamassomos , Interleucina-1beta , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Fatores Quimiotáticos/uso terapêutico , Colesterol , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Interleucina-1beta/metabolismo , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
J Allergy Clin Immunol ; 149(4): 1270-1280, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34678326

RESUMO

BACKGROUND: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.


Assuntos
Asma , Inflamassomos , Citocinas , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-13 , Interleucina-1beta , Interleucina-5 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Obesidade/complicações
11.
PLoS Pathog ; 16(8): e1008695, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750090

RESUMO

The NLRP3 inflammasome has emerged as a central immune regulator that senses virulence factors expressed by microbial pathogens for triggering inflammation. Inflammation can be harmful and therefore this response must be tightly controlled. The mechanisms by which immune cells, such as macrophages, discriminate benign from pathogenic microbes to control the NLRP3 inflammasome remain poorly defined. Here we used live cell imaging coupled with a compendium of diverse clinical isolates to define how macrophages respond and activate NLRP3 when faced with the human yeast commensal and pathogen Candida albicans. We show that metabolic competition by C. albicans, rather than virulence traits such as hyphal formation, activates NLRP3 in macrophages. Inflammasome activation is triggered by glucose starvation in macrophages, which occurs when fungal load increases sufficiently to outcompete macrophages for glucose. Consistently, reducing Candida's ability to compete for glucose and increasing glucose availability for macrophages tames inflammatory responses. We define the mechanistic requirements for glucose starvation-dependent inflammasome activation by Candida and show that it leads to inflammatory cytokine production, but it does not trigger pyroptotic macrophage death. Pyroptosis occurs only with some Candida isolates and only under specific experimental conditions, whereas inflammasome activation by glucose starvation is broadly relevant. In conclusion, macrophages use their metabolic status, specifically glucose metabolism, to sense fungal metabolic activity and activate NLRP3 when microbial load increases. Therefore, a major consequence of Candida-induced glucose starvation in macrophages is activation of inflammatory responses, with implications for understanding how metabolism modulates inflammation in fungal infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Glucose/deficiência , Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Células 3T3 BALB , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Caspase 1/fisiologia , Caspases Iniciadoras/fisiologia , Feminino , Hifas , Inflamação/metabolismo , Inflamação/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/fisiologia , Piroptose
12.
Biochem Pharmacol ; 180: 114156, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682759

RESUMO

The complement fragment C5a is a core effector of complement activation. C5a, acting through its major receptor C5aR1, exerts powerful pro-inflammatory and immunomodulatory functions. Dysregulation of the C5a-C5aR1 axis has been implicated in numerous immune disorders, and the therapeutic inhibition of this axis is therefore imperative for the treatment of these diseases. A myriad of small-molecule C5aR1 inhibitors have been developed and independently characterised over the past two decades, however the pharmacological properties of these compounds has been difficult to directly compare due to the wide discrepancies in the model, read-out, ligand dose and instrumentation implemented across individual studies. Here, we performed a systematic characterisation of the most commonly reported and clinically advanced small-molecule C5aR1 inhibitors (peptidic: PMX53, PMX205 and JPE1375; non-peptide: W545011, NDT9513727, DF2593A and CCX168). Through signalling assays measuring C5aR1-mediated cAMP and ERK1/2 signalling, and ß-arrestin 2 recruitment, this study highlighted the signalling-pathway dependence of the rank order of potencies of the C5aR1 inhibitors. Functional experiments performed in primary human macrophages demonstrated the high insurmountable antagonistic potencies for the peptidic inhibitors as compared to the non-peptide compounds. Finally, wash-out studies provided novel insights into the duration of inhibition of the C5aR1 inhibitors, and confirmed the long-lasting antagonistic properties of PMX53 and CCX168. Overall, this study revealed the potent and prolonged antagonistic activities of selected peptidic C5aR1 inhibitors and the unique pharmacological profile of CCX168, which thus represent ideal candidates to fulfil diverse C5aR1 research and clinical therapeutic needs.


Assuntos
Complemento C5a/antagonistas & inibidores , Complemento C5a/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Compostos de Anilina/metabolismo , Compostos de Anilina/farmacologia , Animais , Células CHO , Complemento C5a/farmacologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácidos Nipecóticos/metabolismo , Ácidos Nipecóticos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
13.
J Leukoc Biol ; 108(3): 967-981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531864

RESUMO

Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1ß secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1ß levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1ß secretion after PVL exposure and controls S. aureus lung burdens.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Exotoxinas/antagonistas & inibidores , Células-Tronco Pluripotentes Induzidas/citologia , Leucocidinas/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Receptor da Anafilatoxina C5a/efeitos dos fármacos , Staphylococcus aureus , Animais , Antígeno CD11b/imunologia , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Exotoxinas/deficiência , Técnicas de Introdução de Genes , Humanos , Interleucina-1beta/metabolismo , Antígenos Comuns de Leucócito/fisiologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Fragmentos de Peptídeos/imunologia , Pneumonia Estafilocócica/imunologia , Subunidades Proteicas , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/fisiologia , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/fisiologia
14.
Bioorg Med Chem Lett ; 30(12): 127186, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32312583

RESUMO

The diaryl sulfonylurea MCC950/CRID3 is a potent NLRP3 inhibitor (IC50 = 8 nM) and, in animal models, MCC950 protects against numerous NLRP3-related neurodegenerative disorders. To evaluate the brain uptake and investigate target engagement of MCC950, we synthesised [11C-urea]MCC950 via carrier added [11C]CO2 fixation chemistry (activity yield = 237 MBq; radiochemical purity >99%; molar activity = 7 GBq/µmol; radiochemical yield (decay-corrected from [11C]CO2) = 1.1%; synthesis time from end-of-bombardment = 31 min; radiochemically stable for >1 h). Despite preclinical efficacy in neurodegeneration studies, preclinical positron emission tomography (PET) imaging studies in mouse, rat and rhesus monkey revealed poor brain uptake of low molar activity [11C]MCC950 and rapid washout. In silico prediction tools suggest efflux transporter liabilities for MCC950 at microdoses, and this information should be taken into account when developing next generation NLRP3 inhibitors and/or PET radiotracers.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Radioisótopos de Carbono , Relação Dose-Resposta a Droga , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Indenos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas , Sulfonas/síntese química , Sulfonas/química
15.
J Am Heart Assoc ; 9(7): e014044, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32223388

RESUMO

Background Aortic aneurysms and dissections are highly lethal diseases for which an effective treatment strategy is critically needed to prevent disease progression. The nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3)-caspase-1 inflammasome cascade was recently shown to play an important role in aortic destruction and disease development. In this study, we tested the effects of MCC950, a potent, selective NLRP3 inhibitor, on preventing aortic destruction and aortic aneurysm and dissection formation. Methods and Results In a model of sporadic aortic aneurysm and dissection induced by challenging wild-type mice with a high-fat, high-cholesterol diet and angiotensin II infusion, MCC950 treatment significantly inhibited challenge-induced aortic dilatation, dissection, and rupture in different thoracic and abdominal aortic segments in both male and female mice. Aortic disease reduction by MCC950 was associated with the prevention of NLRP3-caspase-1 upregulation, smooth muscle cell contractile protein degradation, aortic cell death, and extracellular matrix destruction. Further investigation revealed that preventing matrix metallopeptidase 9 (MMP-9) expression and activation in macrophages is an important mechanism underlying MCC950's protective effect. We found that caspase-1 directly activated MMP-9 by cleaving its N-terminal inhibitory domain. Moreover, the genetic knockdown of Nlrp3 or Casp-1 in mice or treatment of mice with MCC950 diminished the challenge-induced N-terminal cleavage of MMP-9, MMP-9 activation, and aortic destruction. Conclusions Our findings suggest that the NLRP3-caspase-1 inflammasome directly activates MMP-9. Targeting the inflammasome with MCC950 is a promising approach for preventing aortic destruction and aortic aneurysm and dissection development.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/farmacologia , Idoso , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Caspase 1/genética , Caspase 1/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Furanos , Humanos , Indenos , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estudos Prospectivos , Transdução de Sinais , Sulfonamidas , Células THP-1 , Remodelação Vascular/efeitos dos fármacos
16.
Brain ; 143(5): 1414-1430, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282893

RESUMO

Primary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings. The RNA sequencing revealed an interleukin 1 beta (IL1B) signature in patients with primary progressive multiple sclerosis. Subsequent immunophenotyping pointed to blood monocytes as responsible for the IL1B signature observed in this group of patients. Functional experiments at baseline measuring apoptosis-associated speck-like protein containing a CARD (ASC) speck formation showed that the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome was overactive in monocytes from patients with primary progressive multiple sclerosis, and canonical NLRP3 inflammasome activation with a combination of ATP plus lipopolysaccharide was associated with increased IL1B production in this group of patients. Primary progressive multiple sclerosis patients with high IL1B gene expression levels in peripheral blood mononuclear cells progressed significantly faster compared to patients with low IL1B levels based on the time to reach an EDSS of 6.0 and the Multiple Sclerosis Severity Score. In agreement with peripheral blood findings, both NLRP3 and IL1B expression in brain tissue from patients with primary progressive multiple sclerosis was mainly restricted to cells of myeloid lineage. Treatment of mice with a specific NLRP3 inflammasome inhibitor attenuated established experimental autoimmune encephalomyelitis disease severity and improved CNS histopathology. NLRP3 inflammasome-specific inhibition was also effective in reducing axonal damage in a model of lipopolysaccharide-neuroinflammation using organotypic cerebellar cultures. Altogether, these results point to a role of IL1B and the NLRP3 inflammasome as prognostic biomarker and potential therapeutic target, respectively, in patients with primary progressive multiple sclerosis.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Adulto , Animais , Biomarcadores/análise , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico
17.
Cell Rep ; 30(8): 2501-2511.e5, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101731

RESUMO

Pro-inflammatory caspase-1 is a key player in innate immunity. Caspase-1 processes interleukin (IL)-1ß and IL-18 to their mature forms and triggers pyroptosis. These caspase-1 functions are linked to its enzymatic activity. However, loss-of-function missense mutations in CASP1 do not prevent autoinflammation in patients, despite decreased IL-1ß production. In vitro data suggest that enzymatically inactive caspase-1 drives inflammation via enhanced nuclear factor κB (NF-κB) activation, independent of IL-1ß processing. Here, we report two mouse models of enzymatically inactive caspase-1-C284A, demonstrating the relevance of this pathway in vivo. In contrast to Casp1-/- mice, caspase-1-C284A mice show pronounced hypothermia and increased levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-6 when challenged with lipopolysaccharide (LPS). Caspase-1-C284A signaling is RIP2 dependent and mediated by TNF-α but independent of the NLRP3 inflammasome. LPS-stimulated whole blood from patients carrying loss-of-function missense mutations in CASP1 secretes higher amounts of TNF-α. Taken together, these results reveal non-canonical caspase-1 signaling in vivo.


Assuntos
Caspase 1/metabolismo , Inflamação/patologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Loci Gênicos , Genótipo , Células HEK293 , Heterozigoto , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Adulto Jovem
18.
Sci Rep ; 10(1): 2263, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041990

RESUMO

Activation of the inflammasome is involved in the progression of retinal degenerative diseases, in particular, in the pathogenesis of Age-Related Macular Degeneration (AMD), with NLRP3 activation the focus of many investigations. In this study, we used genetic and pharmacological approaches to explore the role of the inflammasome in a mouse model of retinal degeneration. We identify that Casp1/11-/- mice have better-preserved retinal function, reduced inflammation and increased photoreceptor survivability. While Nlrp3-/- mice display some level of preservation of retinal function compared to controls, pharmacological inhibition of NLRP3 did not protect against photoreceptor cell death. Further, Aim2-/-, Nlrc4-/-, Asc-/-, and Casp11-/- mice show no substantial retinal protection. We propose that CASP-1-associated photoreceptor cell death occurs largely independently of NLRP3 and other established inflammasome sensor proteins, or that inhibition of a single sensor is not sufficient to repress the inflammatory cascade. Therapeutic targeting of CASP-1 may offer a more promising avenue to delay the progression of retinal degenerations.


Assuntos
Caspase 1/metabolismo , Inflamassomos/imunologia , Degeneração Macular/imunologia , Células Fotorreceptoras/patologia , Piroptose/imunologia , Animais , Caspase 1/genética , Caspases Iniciadoras/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Indenos , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Injeções Intravítreas , Luz/efeitos adversos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/imunologia , Estresse Oxidativo/efeitos da radiação , Células Fotorreceptoras/imunologia , Piroptose/efeitos dos fármacos , Piroptose/genética , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/patologia , Sulfonamidas , Sulfonas/administração & dosagem
19.
Nat Commun ; 11(1): 760, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029733

RESUMO

Inflammasomes are important for host defence against pathogens and homeostasis with commensal microbes. Here, we show non-haemolytic enterotoxin (NHE) from the neglected human foodborne pathogen Bacillus cereus is an activator of the NLRP3 inflammasome and pyroptosis. NHE is a non-redundant toxin to haemolysin BL (HBL) despite having a similar mechanism of action. Via a putative transmembrane region, subunit C of NHE initiates binding to the plasma membrane, leading to the recruitment of subunit B and subunit A, thus forming a tripartite lytic pore that is permissive to efflux of potassium. NHE mediates killing of cells from multiple lineages and hosts, highlighting a versatile functional repertoire in different host species. These data indicate that NHE and HBL operate synergistically to induce inflammation and show that multiple virulence factors from the same pathogen with conserved function and mechanism of action can be exploited for sensing by a single inflammasome.


Assuntos
Bacillus cereus/patogenicidade , Enterotoxinas/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas de Bactérias/toxicidade , Linhagem Celular , Enterotoxinas/química , Feminino , Proteínas Hemolisinas/toxicidade , Interações entre Hospedeiro e Microrganismos , Especificidade de Hospedeiro , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piroptose/efeitos dos fármacos , Fatores de Virulência/toxicidade
20.
Glia ; 68(2): 407-421, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596526

RESUMO

Microglial NLRP3 inflammasome activation is emerging as a key contributor to neuroinflammation during neurodegeneration. Pathogenic protein aggregates such as ß-amyloid and α-synuclein trigger microglial NLRP3 activation, leading to caspase-1 activation and IL-1ß secretion. Both caspase-1 and IL-1ß contribute to disease progression in the mouse SOD1G93A model of amyotrophic lateral sclerosis (ALS), suggesting a role for microglial NLRP3. Prior studies, however, suggested SOD1G93A mice microglia do not express NLRP3, and SOD1G93A protein generated IL-1ß in microglia independent to NLRP3. Here, we demonstrate using Nlrp3-GFP gene knock-in mice that microglia express NLRP3 in SOD1G93A mice. We show that both aggregated and soluble SOD1G93A activates inflammasome in primary mouse microglia leading caspase-1 and IL-1ß cleavage, ASC speck formation, and the secretion of IL-1ß in a dose- and time-dependent manner. Importantly, SOD1G93A was unable to induce IL-1ß secretion from microglia deficient for Nlrp3, or pretreated with the specific NLRP3 inhibitor MCC950, confirming NLRP3 as the key inflammasome complex mediating SOD1-induced microglial IL-1ß secretion. Microglial NLRP3 upregulation was also observed in the TDP-43Q331K ALS mouse model, and TDP-43 wild-type and mutant proteins could also activate microglial inflammasomes in a NLRP3-dependent manner. Mechanistically, we identified the generation of reactive oxygen species and ATP as key events required for SOD1G93A -mediated NLRP3 activation. Taken together, our data demonstrate that ALS microglia express NLRP3, and that pathological ALS proteins activate the microglial NLRP3 inflammasome. NLRP3 inhibition may therefore be a potential therapeutic approach to arrest microglial neuroinflammation and ALS disease progression.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos Transgênicos , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...