Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(33): 17463-17475, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39105736

RESUMO

Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs). These exfoliants and rheological modifiers cause significant microplastic pollution in natural aquatic environments. Microbeads from nonderivatized biomass like cellulose and lignin can offer a sustainable alternative to these nondegradable microplastics, but processing this biomass into microbeads is challenging due to limited viable solvents and high biomass solution viscosities. To produce biomass microbeads of the appropriate size range for PCCPs (ca. 200-800 µm diameter) with shapes and mechanical properties comparable to those of commercial plastic microbeads, we used a surfactant-free emulsion/precipitation method, mixing biomass solutions in 1-ethyl-3-methylimidazolium acetate (EMImAc) with various oils and precipitating with ethanol. While yield of microbeads within the target size range highly depends on purification conditions, optimized protocols led to >90% yield of cellulose microbeads. Kraft lignin was then successfully incorporated into beads at up to 20 wt %; however, higher lignin contents result in emulsion destabilization unless surfactant is added. Finally, the microbead shape and surface morphology can be tuned using oils of varying viscosities and interfacial tensions. Dripping measurements and pendant drop tensiometry confirmed that the higher affinity of cellulose for certain oil/IL interfaces largely controlled the observed surface morphology. This work thus outlines how biomass composition, oil viscosity, and interfacial properties can be altered to produce more sustainable microbeads for use in PCCPs, which have desirable mechanical properties and can be produced over a wide range of shapes and surface morphologies.


Assuntos
Biomassa , Celulose , Emulsões , Microesferas , Emulsões/química , Celulose/química , Lignina/química , Imidazóis/química , Tamanho da Partícula , Tensoativos/química
2.
Sci Rep ; 12(1): 4697, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304499

RESUMO

Extensional flow properties of polymer solutions in volatile solvents govern many industrially-relevant coating processes, but existing instrumentation lacks the environment necessary to control evaporation. To mitigate evaporation during dripping-onto-substrate (DoS) extensional rheology measurements, we developed a chamber to enclose the sample in an environment saturated with solvent vapor. We validated the evaporation-controlled DoS device by measuring a model high molecular weight polyethylene oxide (PEO) in various organic solvents both inside and outside of the chamber. Evaporation substantially increased the extensional relaxation time [Formula: see text] for PEO in volatile solvents like dichloromethane and chloroform. PEO/chloroform solutions displayed an over 20-fold increase in [Formula: see text] due to the formation of an evaporation-induced surface film; evaporation studies confirmed surface features and skin formation reminiscent of buckling instabilities commonly observed in drying polymer solutions. Finally, the relaxation times of semi-dilute PEO/chloroform solutions were measured with environmental control, where [Formula: see text] scaled with concentration by the exponent [Formula: see text]. These measurements validate the evaporation-controlled DoS environment, and confirm that chloroform is a good solvent for PEO, with a Flory exponent of [Formula: see text]. Our results are the first to control evaporation during DoS extensional rheology, and provide guidelines establishing when environmental control is necessary to obtain accurate rheological parameters.


Assuntos
Polímeros , Substâncias Viscoelásticas , Clorofórmio , Polietilenoglicóis , Reologia , Soluções , Solventes
3.
Angew Chem Int Ed Engl ; 57(18): 4912-4916, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29436159

RESUMO

The influence of segmental chain motion on the gas separation performance of thermally rearranged (TR) polymer membranes is established for TR polybenzoxazoles featuring Tröger's base (TB) monomer subunits as exceptionally rigid sites of contortion along the polymer backbone. These polymers are accessed from solution-processable ortho-acetate functionalized polyimides, which are readily synthesized as high-molecular-weight polymers for membrane casting. We find that thermal rearrangement leads to a small increase in d-spacing between polymer chains and a dramatic pore-network reconfiguration that increases both membrane permeability and O2 /N2 selectivity, putting its performance above the 2015 upper bound.

4.
IEEE Trans Nanobioscience ; 12(2): 112-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23694696

RESUMO

In the past, ablation of cancer cells using radiofrequency heating techniques has been demonstrated, but the current methodology has many flaws, including inconsistent tumor ablation and significant ablation of normal cells. Other researchers have begun to develop a treatment that is more selective for cancer cells using metallic nanoparticles and constant electric field exposure. In these studies, cell necrosis is induced by heating antibody functionalized metallic nanoparticles attached to cancer cells. Our approach to studying this phenomenon is to use similarly functionalized metallic nanoparticles that are specific for the T47D breast cancer cell line, exposing these nanoparticle cell conjugates to a nanosecond pulsed electric field. Using fluorescent, polystyrene-coated, iron-oxide nanoparticles, the results of our pilot study indicated that we were able to ablate up to approximately 80% of the cells using 60 ns pulses in increasing numbers of pulses and up to approximately 90% of the cells using 300 ns pulses in increasing numbers of pulses. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro constant electric field studies.


Assuntos
Neoplasias da Mama/terapia , Estimulação Elétrica , Compostos Férricos/administração & dosagem , Hipertermia Induzida , Nanopartículas/administração & dosagem , Anticorpos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Compostos Férricos/química , Humanos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA