Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569982

RESUMO

Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Tolerância a Medicamentos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
2.
Res Sq ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260456

RESUMO

Telomeres undergo shortening with each cell division, serving as biomarkers of human aging, which is characterized by short telomeres and restricted telomerase expression in adult tissues. Contrarily, mice, featuring their longer telomeres and widespread telomerase activity, present limitations as models for understanding telomere-related human biology and diseases. To bridge this gap, we engineered a mouse strain with a humanized mTert gene, hmTert, wherein specific non-coding sequences were replaced with their human counterparts. The hmTert gene, encoding the wildtype mTert protein, was repressed in adult tissues beyond the gonads and thymus, closely resembling the regulatory pattern of the human TERT gene. Remarkably, the hmTert gene rescued telomere dysfunction in late generations of mTert-knockout mice. Through successive intercrosses of Terth/- mice, telomere length progressively declined, stabilizing below 10-kb. Terth/h mice achieved a human-like average telomere length of 10-12 kb, contrasting with the 50-kb length in wildtype C57BL/6J mice. Despite shortened telomeres, Terth/h mice maintained normal body weight and cell homeostasis in highly proliferative tissues. Notably, colonocyte proliferation decreased significantly in Terth/h mice during dextran sodium sulfate-induced ulcerative colitis-like pathology, suggesting limitations on cellular renewal due to short telomeres. Our findings underscore the genetic determination of telomere homeostasis in mice by the Tert gene. These mice, exhibiting humanized telomere homeostasis, serve as a valuable model for exploring fundamental questions related to human aging and cancer.

3.
Int J Cancer ; 154(3): 548-560, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37727982

RESUMO

Telomerase activation is a crucial step in melanomagenesis, often occurring because of ultraviolet radiation (UVR)-induced mutations at the telomerase gene (TERT) promoter and rendering TERT transcription in response to the activated Raf-MAP kinase pathway by BRAFV600E mutation. Due to the excessively long telomeres in mice, this process does not occur during melanomagenesis in mouse models. To investigate the impact of telomere dysfunction on melanomagenesis, BrafV600E was induced in generations 1 and 4 (G1 and G4) of Tert-/- mice. Our findings revealed that, regardless of UVR exposure, melanoma development was delayed in G4 mice, which had shorter telomeres compared to G1 and wild-type C57BL/6J (G0) mice. Moreover, many G4 tumors displayed an accumulation of excessive DNA damage, as evidenced by increased γH2A.X staining. Tumors from UVR-exposed mice exhibited elevated p53 protein expression. Cultured tumor cells isolated from G4 mice displayed abundant chromosomal fusions and rearrangements, indicative of telomere dysfunction in these cells. Additionally, tumor cells derived from UVB-exposed mice exhibited constitutively elevated expression of mutant p53 proteins, suggesting that p53 was a target of UVB-induced mutagenesis. Taken together, our findings suggest that telomere dysfunction hampers melanomagenesis, and targeting telomere crisis-mediated genomic instability may hold promise for the prevention and treatment of melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Telomerase , Animais , Camundongos , Melanoma/genética , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta/efeitos adversos
4.
Front Pharmacol ; 13: 894535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160379

RESUMO

Despite recent improvements in multiple myeloma (MM) treatment, MM remains an incurable disease and most patients experience a relapse. The major reason for myeloma recurrence is the persistent stem cell-like population. It has been demonstrated that overexpression of Bruton's tyrosine kinase (BTK) in MM stem cell-like cells is correlated with drug resistance and poor prognosis. We have developed a novel small BTK inhibitor, KS151, which is unique compared to other BTK inhibitors. Unlike ibrutinib, and the other BTK inhibitors such as acalabrutinib, orelabrutinib, and zanubrutinib that covalently bind to the C481 residue in the BTK kinase domain, KS151 can inhibit BTK activities without binding to C481. This feature of KS151 is important because C481 becomes mutated in many patients and causes drug resistance. We demonstrated that KS151 inhibits in vitro BTK kinase activities and is more potent than ibrutinib. Furthermore, by performing a semi-quantitative, sandwich-based array for 71-tyrosine kinase phosphorylation, we found that KS151 specifically inhibits BTK. Our western blotting data showed that KS151 inhibits BTK signaling pathways and is effective against bortezomib-resistant cells as well as MM stem cell-like cells. Moreover, KS151 potentiates the apoptotic response of bortezomib, lenalidomide, and panobinostat in both MM and stem cell-like cells. Interestingly, KS151 inhibits stemness markers and is efficient in inhibiting Nanog and Gli1 stemness markers even when MM cells were co-cultured with bone marrow stromal cells (BMSCs). Overall, our results show that we have developed a novel BTK inhibitor effective against the stem cell-like population, and potentiates the response of chemotherapeutic agents.

5.
Cancer Res ; 82(14): 2503-2514, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35584245

RESUMO

One of the current stumbling blocks in our fight against cancer is the development of acquired resistance to therapy, which is attributable to approximately 90% of cancer-related deaths. Undercutting this process during treatment could significantly improve cancer management. In many cases, drug resistance is mediated by a drug-tolerant persister (DTP) cell subpopulation present in tumors, often referred to as persister cells. This review provides a summary of currently known persister cell subpopulations and approaches to target them. A specific DTP cell subpopulation with elevated levels of aldehyde dehydrogenase (ALDH) activity has stem cell-like characteristics and a high level of plasticity, enabling them to switch rapidly between high and low ALDH activity. Further studies are required to fully elucidate the functions of ALDH-high DTP cells, how they withstand drug concentrations that kill other cells, and how they rapidly adapt under levels of high cellular stress and eventually lead to more aggressive, recurrent, and drug-resistant cancer. Furthermore, this review addresses the processes used by the ALDH-high persister cell subpopulation to enable cancer progression, the ALDH isoforms important in these processes, interactions of ALDH-high DTPs with the tumor microenvironment, and approaches to therapeutically modulate this subpopulation in order to more effectively manage cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Aldeído Desidrogenase , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas , Microambiente Tumoral
6.
Cancer Immunol Res ; 10(6): 757-769, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35439317

RESUMO

Immunotherapy has revolutionized cancer treatment. Unfortunately, most tumor types do not respond to immunotherapy due to a lack of immune infiltration or "cold" tumor microenvironment (TME), a contributing factor in treatment failure. Activation of the p53 pathway can increase apoptosis of cancer cells, leading to enhanced antigen presentation, and can stimulate natural killer (NK) cells through expression of stress ligands. Therefore, modulation of the p53 pathway in cancer cells with wild-type TP53 has the potential to enhance tumor immunogenicity to NK cells, produce an inflammatory TME, and ultimately lead to tumor regression. In this study, we report simultaneous targeting of the AKT/WEE1 pathways is a novel and tolerable approach to synergistically induce p53 activation to inhibit tumor development. This approach reduced the growth of melanoma cells and induced plasma membrane surface localization of the ER-resident protein calreticulin, an indicator of immunogenic cell death (ICD). Increase in ICD led to enhanced expression of stress ligands recognized by the activating NK-cell receptor NKG2D, promoting tumor lysis. WEE1/AKT inhibition resulted in recruitment and activation of immune cells, including NK cells, in the TME, triggering an inflammatory cascade that transformed the "cold" TME of B16F10 melanoma into a "hot" TME that responded to anti-programmed cell death protein 1 (anti-PD-1), resulting in complete regression of established tumors. These results suggest that AKT/WEE1 pathway inhibition is a potential approach to broaden the utility of class-leading anti-PD-1 therapies by enhancing p53-mediated, NK cell-dependent tumor inflammation and supports the translation of this novel approach to further improve response rates for metastatic melanoma.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Proteínas de Ciclo Celular/metabolismo , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Ligantes , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408842

RESUMO

Decreasing the levels of certain proteins has been shown to be important for controlling cancer but it is currently unknown whether proteins could potentially be targeted by the inhibiting of protein synthesis. Under this circumstance, targeting protein translation could preferentially affect certain pathways, which could then be of therapeutic advantage when treating cancer. In this report, eukaryotic elongation factor-2 kinase (EEF2K), which is involved in protein translation, was shown to regulate cholesterol metabolism. Targeting EEF2K inhibited key parts of the cholesterol pathway in cancer cells, which could be rescued by the addition of exogenous cholesterol, suggesting that it is a potentially important pathway modulated by targeting this process. Specifically, targeting EEF2K significantly suppressed tumour cell growth by blocking mRNA translation of the cholesterol biosynthesis transcription factor, sterol regulatory element-binding protein (SREBP) 2, and the proteins it regulates. The process could be rescued by the addition of LDL cholesterol taken into the cells via non-receptor-mediated-uptake, which negated the need for SREBP2 protein. Thus, the levels of SREBP2 needed for cholesterol metabolism in cancer cells are therapeutically vulnerable by targeting protein translation. This is the first report to suggest that targeting EEF2K can be used to modulate cholesterol metabolism to treat cancer.


Assuntos
Quinase do Fator 2 de Elongação , Melanoma , Colesterol/metabolismo , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Humanos , Biossíntese de Proteínas , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155099

RESUMO

Multiple independent sequence variants of the hTERT locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; hTERT alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.


Assuntos
Repetições Minissatélites/genética , Polimorfismo Genético , Telomerase/genética , Ativação Transcricional , Negro ou Afro-Americano/genética , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Cromossomos Artificiais Bacterianos/genética , Elementos E-Box/genética , Genoma Humano , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Regiões Promotoras Genéticas , Ligação Proteica/genética , Deleção de Sequência/genética , Homeostase do Telômero/genética
9.
Cancer Lett ; 506: 107-119, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33600895

RESUMO

Targeting the metastatic process to prevent disease dissemination in cancer remains challenging. One step in the metastatic cascade involves cancer cells transiting through the vascular endothelium after inflammation has increased the permeability of this cellular layer. Reducing inflammation-mediated gaps in the vascular endothelium could potentially be used to retard metastasis. This study describes the development of a novel ASR396-containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 (S1PR1) in order to tighten the junctions between the endothelial cells lining the vascular endothelium thereby inhibiting metastasis. ASR396 was derived from the S1PR1 agonist SEW2871 through chemical modification enabling the new compound to be loaded into a nanoliposome. ASR396 retained S1PR1 binding activity and the nanoliposomal formulation (nanoASR396) made it systemically bioavailable upon intravenous injection. Studies conducted in microvessels demonstrated that nanoASR396 significantly attenuated inflammatory mediator-induced permeability increase through the S1PR1 activation. Similarly, nanoASR396 inhibited gap formation mediated by inflammatory agents on an endothelial cell monolayer by decreasing levels of phosphorylated myosin light chain protein thereby inhibiting cellular contractility. In animal models, nanoASR396 inhibited lung metastasis by up to 80%, indicating its potential for retarding melanoma metastasis. Thus, a novel bioavailable nanoparticle-based S1PR1 agonist has been developed to negate the effects of inflammatory mediators on the vascular endothelium in order to reduce the metastatic dissemination of cancer cells.


Assuntos
Células Endoteliais/metabolismo , Cadeias Leves de Miosina/metabolismo , Metástase Neoplásica/prevenção & controle , Receptores de Esfingosina-1-Fosfato/fisiologia , Animais , Permeabilidade Capilar , Linhagem Celular Tumoral , Humanos , Lipossomos , Camundongos , Nanopartículas , Oxidiazóis/farmacologia , Fosforilação , Transdução de Sinais/fisiologia , Receptores de Esfingosina-1-Fosfato/agonistas , Tiofenos/farmacologia
10.
Front Oncol ; 10: 834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637352

RESUMO

Increased protein synthesis is a key process in melanoma, which is regulated by the ALDH18A1 gene encoding pyrroline-5-carboxylate synthase (P5CS). P5CS is involved in proline biosynthesis and targeting ALDH18A1 has previously been shown to inhibit melanoma development by decreasing intracellular proline levels to increase the phosphorylation of eIF2α mediated by GCN2, which then impairs mRNA translation. Since there are no current inhibitors of P5CS, decreased eIF2α phosphorylation in melanoma was targeted using salubrinal (a specific inhibitor of eIF2α phosphatase enzymes). While salubrinal alone was ineffective, the combined use of salubrinal and 4E1RCat (a dual inhibitor of eIF4E:4E-BP1 and eIF4E:eIF4G interaction to prevent assembly of the eIF4F complex and inhibit cap-dependent translation) was found to be effective at decreasing protein synthesis, protein translation, and cell cycle progression to synergistically decrease melanoma cell viability and inhibited xenograft melanoma tumor development. The combination of these agents synergistically decreased melanoma cell viability while having minimal effect on normal cells. This is the first report demonstrating that it is possible to inhibit melanoma viability by targeting eIF2α signaling using salubrinal and 4E1RCat to disrupt assembly of the eIF4F complex.

11.
Blood ; 136(13): 1520-1534, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32396934

RESUMO

High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.


Assuntos
Caseína Quinase II/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína bcl-X/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
12.
Cancer Treat Rev ; 85: 101975, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050108

RESUMO

The mechanisms of melanoma metastasis have been the subject of extensive research for decades. Improved diagnostic and therapeutic strategies are of increasing importance for the treatment of melanoma due to its high burden of mortality in the advanced stages of the disease. Intercellular communication is a critical event for the progression of cancer. Collective evidence suggests that exosomes, small extracellular membrane vesicles released by the cells, are important facilitators of intercellular communication between the cells and the surrounding environment. Although the emerging field of exosomes is rapidly gaining traction in the scientific community, there is limited knowledge regarding the role of exosomes in melanoma. This review discusses the multifaceted role of melanoma-derived exosomes in promoting the process of metastasis by modulating the invasive and angiogenic capacity of malignant cells. The future implications of exosome research and the therapeutic potential of exosomes are also discussed.


Assuntos
Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/fisiologia , Comunicação Celular , Progressão da Doença , Humanos , Melanoma/metabolismo , Invasividade Neoplásica/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , Sensibilidade e Especificidade , Neoplasias Cutâneas/metabolismo
13.
Eur J Med Chem ; 187: 111962, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887569

RESUMO

The aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes that are overexpressed in various cancers. Increased expression of ALDH is associated with poor prognosis, stemness, and drug resistance. Because of the critical role of ALDH in cancer stem cells, several ALDH inhibitors have been developed. Nonetheless, all these inhibitors either lack efficacy or are too toxic or have not been tested extensively. Thus, the continued development of ALDH inhibitors is warranted. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin backbone. The early molecular docking studies and enzymatic tests revealed that 3(a-l) and 4(a-l) are the potent ALDH1A1, ALDHA2, and ALDH3A1 inhibitors. ALDH inhibitory IC50s of 3(a-l) and 4(a-l) were 230 nM to >10,000 nM for ALDH1A1, 939 nM to >10,000 nM for ALDH2 and 193 nM to >10,000 nM for ALDH3A1. The most potent compounds 3(h-l) had IC50s for killing melanoma cells ranged from 2.1 to 5.7 µM, while for colon cancer cells, it ranged from 2.5 to 5.8 µM and for multiple myeloma cells ranging from 0.3 to 4.7 µM. Toxicity studies of 3(h-l) revealed that 3h to be the least toxic multi-ALDH isoform inhibitor. Mechanistically, 3(h-l) caused increased ROS activity, lipid peroxidation, and toxic aldehyde accumulation, secondary to potent multi-ALDH isoform inhibition leading to increased apoptosis and G2/M cell cycle arrest. Together, the study details the design, synthesis, and evaluation of potent, multi-isoform ALDH inhibitors to treat cancers.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Aldeído Desidrogenase/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
14.
Mol Cancer Ther ; 19(2): 447-459, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31754071

RESUMO

The aldehyde dehydrogenases (ALDH) are a major family of detoxifying enzymes that contribute to cancer progression and therapy resistance. ALDH overexpression is associated with a poor prognosis in many cancer types. The use of multi-ALDH isoform or isoform-specific ALDH inhibitors as anticancer agents is currently hindered by the lack of viable candidates. Most multi-ALDH isoform inhibitors lack bioavailability and are nonspecific or toxic, whereas most isoform-specific inhibitors are not effective as monotherapy due to the overlapping functions of ALDH family members. The present study details the development of a novel, potent, multi-isoform ALDH inhibitor, called KS100. The rationale for drug development was that inhibition of multiple ALDH isoforms might be more efficacious for cancer compared with isoform-specific inhibition. Enzymatic IC50s of KS100 were 207, 1,410, and 240 nmol/L toward ALDH1A1, 2, and 3A1, respectively. Toxicity of KS100 was mitigated by development of a nanoliposomal formulation, called NanoKS100. NanoKS100 had a loading efficiency of approximately 69% and was stable long-term. NanoKS100 was 5-fold more selective for killing melanoma cells compared with normal human fibroblasts. NanoKS100 administered intravenously at a submaximal dose (3-fold lower) was effective at inhibiting xenografted melanoma tumor growth by approximately 65% without organ-related toxicity. Mechanistically, inhibition by KS100 significantly reduced total cellular ALDH activity to increase reactive oxygen species generation, lipid peroxidation, and accumulation of toxic aldehydes leading to apoptosis and autophagy. Collectively, these data suggest the successful preclinical development of a nontoxic, bioavailable, nanoliposomal formulation containing a novel multi-ALDH isoform inhibitor effective in the treatment of cancer.


Assuntos
Família Aldeído Desidrogenase 1/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Melanoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Transfecção
15.
Trends Pharmacol Sci ; 40(10): 774-789, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515079

RESUMO

Aldehyde dehydrogenases (ALDHs) are highly expressed in the chemotherapy- and radiotherapy-resistant cell subpopulations of many different cancer types. Accordingly, the development of ALDH inhibitors may be the most direct approach to target these cell populations. However, inhibiting multiple ALDH family members can be toxic and isoform-specific inhibition is often ineffective. This review discusses the role of ALDH in cancer and therapy resistance, and then overviews the various available ALDH inhibitors with a focus on the clinical potential and limitations of these agents as cancer therapeutics. Finally, challenges and future research directions to effectively target ALDH in the management of cancer therapy resistance are discussed.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Aldeído Desidrogenase/metabolismo , Animais , Inibidores Enzimáticos/uso terapêutico , Humanos
16.
Cell Rep ; 28(8): 1971-1980.e8, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433975

RESUMO

Reprogrammed metabolism and cell cycle dysregulation are two cancer hallmarks. p16 is a cell cycle inhibitor and tumor suppressor that is upregulated during oncogene-induced senescence (OIS). Loss of p16 allows for uninhibited cell cycle progression, bypass of OIS, and tumorigenesis. Whether p16 loss affects pro-tumorigenic metabolism is unclear. We report that suppression of p16 plays a central role in reprogramming metabolism by increasing nucleotide synthesis. This occurs by activation of mTORC1 signaling, which directly mediates increased translation of the mRNA encoding ribose-5-phosphate isomerase A (RPIA), a pentose phosphate pathway enzyme. p16 loss correlates with activation of the mTORC1-RPIA axis in multiple cancer types. Suppression of RPIA inhibits proliferation only in p16-low cells by inducing senescence both in vitro and in vivo. These data reveal the molecular basis whereby p16 loss modulates pro-tumorigenic metabolism through mTORC1-mediated upregulation of nucleotide synthesis and reveals a metabolic vulnerability of p16-null cancer cells.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Aldose-Cetose Isomerases/metabolismo , Animais , Linhagem Celular , Senescência Celular , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos SCID , Via de Pentose Fosfato , Biossíntese de Proteínas
17.
Oncoimmunology ; 8(2): e1539614, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713799

RESUMO

Metastatic melanoma is a significant clinical problem with a 5-year survival rate of only 15-20%. Recent approval of new immunotherapies and targeted inhibitors have provided much needed options for these patients, in some cases promoting dramatic disease regressions. In particular, antibody-based therapies that block the PD-1/PD-L1 checkpoint inhibitory pathway have achieved an increased overall response rate in metastatic melanoma, yet durable response rates are reported only around 15%. To improve the overall and durable response rates for advanced-stage melanoma, combined targeted and immune-based therapies are under investigation. Here, we investigated how the natural products called schweinfurthins, which have selective anti-proliferative activity against many cancer types, impact anti-(α)PD-1-mediated immunotherapy of murine melanomas. Two different compounds efficiently reduced the growth of human and murine melanoma cells in vitro and induced plasma membrane surface localization of the ER-resident protein calreticulin in B16.F10 melanoma cells, an indicator of immunogenic cell death. In addition, both compounds improved αPD-1-mediated immunotherapy of established tumors in immunocompetent C57BL/6 mice either by delaying tumor progression or resulting in complete tumor regression. Improved immunotherapy was accomplished following only a 5-day course of schweinfurthin, which was associated with initial tumor regression even in the absence of αPD-1. Schweinfurthin-induced tumor regression required an intact immune system as tumors were unaffected in NOD scid gamma (NSG) mice. These results indicate that schweinfurthins improve αPD-1 therapy, leading to enhanced and durable anti-tumor immunity and support the translation of this novel approach to further improve response rates for metastatic melanoma.

18.
Immunology ; 156(1): 47-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387499

RESUMO

The role of aldehyde dehydrogenase (ALDH) in carcinogenesis and resistance to cancer therapies is well known. Mounting evidence also suggests a potentially important role for ALDH in the induction and function of regulatory T (Treg) cells. Treg cells are important cells of the immune system involved in promoting immune tolerance and preventing aberrant immune responses to beneficial or non-harmful antigens. However, Treg cells also impair tumor immunity, leading to the progression of various carcinomas. ALDH expression and the subsequent production of retinoic acid by numerous cells, including dendritic cells, macrophages, eosinophils and epithelial cells, seems important in Treg induction and function in multiple organ systems. This is particularly evident in the gastrointestinal tract, pulmonary tract and skin, which are exposed to a myriad of environmental antigens and represent interfaces between the human body and the outside world. Expression of ALDH in Treg cells themselves may also be involved in the proliferation of these cells and resistance to certain cytotoxic therapies. Hence, inhibition of ALDH expression may be useful to treat cancer. Besides the direct effect of ALDH inhibition on carcinogenesis and resistance to cancer therapies, inhibition of ALDH could potentially augment the immune response to tumor antigens by inhibiting Treg induction, function and ability to promote immune tolerance to tumor cells in multiple cancer types.


Assuntos
Aldeído Desidrogenase/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/fisiologia , Aldeído Desidrogenase/genética , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Tolerância Imunológica , Imunidade Celular , Microambiente Tumoral
19.
Melanoma Res ; 29(2): 216-219, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30499870

RESUMO

Significant advances have been made in the treatment of melanoma by targeting key cellular pathways, but additional targets are needed as many patients do not respond or relapse with resistant disease. MicroRNA-155 (MiR-155) has previously been shown to regulate melanoma cell growth and acts as a tumor suppressor. We tested a clinical population of melanoma tumors for miR-155 expression, and find that expression is low in most patients, although not predictive of outcome. We identified the protein kinase WEE1 as a novel target of miR-155. A mouse model of experimental metastasis finds that both increased expression of miR-155 and silencing of WEE1 lead to decreased metastases. Loss of miR-155 and increased expression of WEE1 may contribute to the metastatic phenotype in patients with melanoma.


Assuntos
Proteínas de Ciclo Celular/genética , Melanoma/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Humanos , Melanoma/patologia , Metástase Neoplásica , Neoplasias Cutâneas/patologia , Regulação para Cima
20.
Nanomedicine ; 14(3): 863-873, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317343

RESUMO

Drug resistance and toxicity are major limitations of cancer treatment and frequently occurs during melanoma therapy. Nanotechnology can decrease drug resistance by improving drug delivery, with limited toxicity. This study details the development of nanoparticles containing arachidonyl trifluoromethyl ketone (ATK), a cytosolic phospholipase A2 inhibitor, which can inhibit multiple key pathways responsible for the development of recurrent resistant disease. Free ATK is toxic, limiting its efficacy as a therapeutic agent. Hence, a novel nanoliposomal delivery system called NanoATK was developed, which loads 61.7% of the compound and was stable at 4oC for 12 weeks. The formulation decreased toxicity-enabling administration of higher doses, which was more effective at inhibiting melanoma cell growth compared to free-ATK. Mechanistically, NanoATK decreased cellular proliferation and triggered apoptosis to inhibit melanoma xenograft tumor growth without affecting animal weight. Functionally, it inhibited the cPLA2, AKT, and STAT3 pathways. Our results suggest the successful preclinical development of a unique nanoliposomal formulation containing ATK for the treatment of melanoma.


Assuntos
Ácidos Araquidônicos/farmacologia , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Melanoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Animais , Ácidos Araquidônicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Lipossomos/química , Melanoma/enzimologia , Melanoma/patologia , Camundongos , Camundongos Nus , Nanopartículas/química , Inibidores de Fosfolipase A2/administração & dosagem , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...