Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 6(9): e1001116, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886099

RESUMO

Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.


Assuntos
Pan troglodytes/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/mortalidade , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Linfócitos T CD4-Positivos/virologia , Simulação por Computador , Fezes/química , Fezes/virologia , Feminino , Humanos , Masculino , Modelos Estatísticos , Filogenia , Dinâmica Populacional , RNA Mensageiro/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Tanzânia/epidemiologia
2.
Nature ; 467(7314): 420-5, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20864995

RESUMO

Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.


Assuntos
Doenças dos Símios Antropoides/parasitologia , Gorilla gorilla/parasitologia , Malária Falciparum/parasitologia , Malária Falciparum/veterinária , Plasmodium falciparum/isolamento & purificação , África/epidemiologia , Animais , Animais Selvagens/classificação , Animais Selvagens/parasitologia , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/transmissão , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Evolução Molecular , Fezes/parasitologia , Genes Mitocondriais/genética , Variação Genética/genética , Genoma de Protozoário/genética , Gorilla gorilla/classificação , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Dados de Sequência Molecular , Pan paniscus/parasitologia , Pan troglodytes/parasitologia , Filogenia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/isolamento & purificação , Plasmodium falciparum/genética , Prevalência , Zoonoses/parasitologia , Zoonoses/transmissão
3.
Pain ; 58(2): 169-183, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7816485

RESUMO

Background and noxious heat-evoked responses of wide-dynamic-range (WDR) and high-threshold (HT) lumbosacral spinal dorsal horn neurons were recorded in spontaneously hypertensive rats (SHRs), Wistar-Kyoto normotensive rats (WKYs), lifetime captopril-treated SHRs, SHRs with bilateral cervical vagotomy, SHRs with bilateral sino-aortic deafferentation (SAD), and SHRs with either a single or repeated administration of naloxone methobromide (NMB). Stimulus-response functions (SRFs) were generated for neurons using 15 sec of heating of the foot at temperatures ranging from 38 to 52 degrees C. Comparisons were made of neuronal response thresholds, slopes of the SRFs, mean discharge frequency during heat stimulation, arterial blood pressure (ABP), and heart rate (HR). The primary finding was that group mean SRFs for both WDR and HT neurons were shifted in a parallel, rightward fashion in SHRs compared to WKYs. Heat-evoked response thresholds were increased and asymptotic discharge frequencies were decreased in WDR and HT neurons of SHRs compared to WKYs. Analyses of group mean SRFs for WDR and HT neurons of SHRs receiving lifetime captopril treatment indicated they were normalized to the SRFs of WKYs, but detailed comparisons using discharge frequency during heat stimulation revealed that this was due to a statistical averaging effect. Specifically, lifetime captopril-treated SHRs not only showed enhanced neuronal responses to the onset of noxious heat but also enhanced adaptation of neuronal responses with continued heating compared to WKYs. Bilateral SAD in SHRs significantly increased the total discharge frequency of WDR neurons to heat stimuli between 44 and 52 degrees C, but produced no change in the response threshold for heat-evoked activation of these neurons. A similar effect of SAD was observed in HT neurons of SHRs, but the greater response thresholds of HT neurons precluded detection of any significant effect. Bilateral cervical vagotomy did not affect response thresholds, slopes, or total discharge frequencies of SHRs, although only WDR neurons were studied. SRFs of WDR and HT neurons in SHRs obtained pre- and post-administration of a single dose of NMB did not differ. However, repeated administration of NMB in SHRs resulted in a parallel, leftward shift in SRFs of both WDR and HT neurons. In all strains and treatments studied, there were no significant differences in background activities of these neurons that might contribute to the observed outcomes. In conclusion, the hypoalgesia reported in human essential hypertensives and animals with chronic hypertension may be due to a significant attenuation in spinal nociceptive transmission.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Hipertensão/fisiopatologia , Nociceptores/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Captopril/farmacologia , Feminino , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Temperatura Alta , Masculino , Microeletrodos , Denervação Muscular , Naloxona/farmacologia , Nociceptores/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Medula Espinal/efeitos dos fármacos , Técnicas Estereotáxicas , Transmissão Sináptica/efeitos dos fármacos , Vagotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...