Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Am J Hum Genet ; 111(4): 729-741, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579670

RESUMO

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Assuntos
Epilepsia Generalizada , Glutamato-Amônia Ligase , Glutamina , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
2.
HGG Adv ; 5(3): 100287, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553851

RESUMO

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.

3.
Intern Med J ; 54(3): 388-397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37732891

RESUMO

BACKGROUND: The complexities of mitochondrial disease make epidemiological studies challenging, yet this information is important in understanding the healthcare burden and addressing service and educational needs. Existing studies are limited to quaternary centres or focus on a single genotype or phenotype and estimate disease prevalence at 12.5 per 100 000. New Zealand's (NZ) size and partially integrated national healthcare system make it amenable to a nationwide prevalence study. AIM: To estimate the prevalence of molecularly confirmed and suspected mitochondrial disease on 31 December 2015 in NZ. METHODS: Cases were identified from subspecialists and laboratory databases and through interrogation of the Ministry of Health National Minimum Dataset with a focus on presentations between 2000 and 2015. Patient records were reviewed, and those with a diagnosis of 'mitochondrial disease' who were alive and residing in NZ on the prevalence date were included. These were divided into molecularly confirmed and clinically suspected cases. Official NZ estimated resident population data were used to calculate prevalence. RESULTS: Seven hundred twenty-three unique national health index numbers were identified. Five hundred five were excluded. The minimum combined prevalence for mitochondrial disease was 4.7 per 100 000 (95% confidence interval (CI): 4.1-5.4). The minimum prevalence for molecularly confirmed and suspected disease was 2.9 (95% CI 2.4-3.4) and 1.8 (95% CI 1.4-2.2) cases per 100 000 respectively. CONCLUSIONS: Within the limitations of this study, comparison to similar prevalence studies performed by specialist referral centres suggests mitochondrial disease is underdiagnosed in NZ. This highlights a need for improved education and referral pathways for mitochondrial disease in NZ.


Assuntos
Atenção à Saúde , Humanos , Estudos Transversais , Nova Zelândia/epidemiologia , Prevalência
5.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37586838

RESUMO

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/genética , Fácies , Fenótipo , Proteínas Repressoras/genética , Fatores de Transcrição , Neuroimagem
6.
EMBO Mol Med ; 15(10): e16908, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609821

RESUMO

Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.

7.
Bone Rep ; 18: 101668, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36909664

RESUMO

Mutations in FLNA, which encodes the cytoskeletal protein FLNA, cause a spectrum of sclerosing skeletal dysplasias. Although many of these genetic variants are recurrent and cluster within the gene, the pathogenic mechanism that underpins the development of these skeletal phenotypes is unknown. To determine if the skeletal dysplasia in FLNA-related conditions is due to a cell-autonomous loss-of-function localising to osteoblasts and/or osteocytes, we utilised mouse models to conditionally remove Flna from this cellular lineage. Flna was conditionally knocked out from mature osteocytes using the Dmp1-promoter driven Cre-recombinase expressing mouse, as well as the committed osteoblast lineage using the Osx-Cre or Col1a1-Cre expressing lines. We measured skeletal parameters with µCT and histological methods, as well as gene expression in the mineralised skeleton. We found no measureable differences between the conditional Flna knockout mice, and their control littermate counterparts. Moreover, all of the conditional Flna knockout mice, developed and aged normally. From this we concluded that the skeletal dysplasia phenotype associated with pathogenic variants in FLNA is not caused by a cell-autonomous loss-of-function in the osteoblast-osteocyte lineage, adding more evidence to the hypothesis that these phenotypes are due to gain-of-function in FLNA.

8.
Am J Med Genet A ; 191(5): 1164-1209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36779427

RESUMO

The "Nosology of genetic skeletal disorders" has undergone its 11th revision and now contains 771 entries associated with 552 genes reflecting advances in molecular delineation of new disorders thanks to advances in DNA sequencing technology. The most significant change as compared to previous versions is the adoption of the dyadic naming system, systematically associating a phenotypic entity with the gene it arises from. We consider this a significant step forward as dyadic naming is more informative and less prone to errors than the traditional use of list numberings and eponyms. Despite the adoption of dyadic naming, efforts have been made to maintain strong ties to the MIM catalog and its historical data. As with the previous versions, the list of disorders and genes in the Nosology may be useful in considering the differential diagnosis in the clinic, directing bioinformatic analysis of next-generation sequencing results, and providing a basis for novel advances in biology and medicine.

9.
Science ; 376(6599): eabf9088, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709258

RESUMO

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.


Assuntos
Centrossomo , Células-Tronco Neurais , Neurogênese , Neurônios , Heterotopia Nodular Periventricular , Mapas de Interação de Proteínas , Processamento Alternativo , Animais , Encéfalo/anormalidades , Centrossomo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Microtúbulos/metabolismo , Neurônios/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Proteoma/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Transcrição/metabolismo
10.
Bone Res ; 10(1): 37, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474298

RESUMO

Spondylocarpotarsal syndrome (SCT) is a rare musculoskeletal disorder characterized by short stature and vertebral, carpal, and tarsal fusions resulting from biallelic nonsense mutations in the gene encoding filamin B (FLNB). Utilizing a FLNB knockout mouse, we showed that the vertebral fusions in SCT evolved from intervertebral disc (IVD) degeneration and ossification of the annulus fibrosus (AF), eventually leading to full trabecular bone formation. This resulted from alterations in the TGFß/BMP signaling pathway that included increased canonical TGFß and noncanonical BMP signaling. In this study, the role of FLNB in the TGFß/BMP pathway was elucidated using in vitro, in vivo, and ex vivo treatment methodologies. The data demonstrated that FLNB interacts with inhibitory Smads 6 and 7 (i-Smads) to regulate TGFß/BMP signaling and that loss of FLNB produces increased TGFß receptor activity and decreased Smad 1 ubiquitination. Through the use of small molecule inhibitors in an ex vivo spine model, TGFß/BMP signaling was modulated to design a targeted treatment for SCT and disc degeneration. Inhibition of canonical and noncanonical TGFß/BMP pathway activity restored Flnb-/- IVD morphology. These most effective improvements resulted from specific inhibition of TGFß and p38 signaling activation. FLNB acts as a bridge for TGFß/BMP signaling crosstalk through i-Smads and is key for the critical balance in TGFß/BMP signaling that maintains the IVD. These findings further our understanding of IVD biology and reveal new molecular targets for disc degeneration as well as congenital vertebral fusion disorders.

11.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202563

RESUMO

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Assuntos
Histonas , Peixe-Zebra , Animais , Cromatina , DNA , Histonas/metabolismo , Humanos , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Eur J Hum Genet ; 30(4): 420-427, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34992252

RESUMO

ZNF711 is one of eleven zinc-finger genes on the X chromosome that have been associated with X-linked intellectual disability. This association is confirmed by the clinical findings in 20 new cases in addition to 11 cases previously reported. No consistent growth aberrations, craniofacial dysmorphology, malformations or neurologic findings are associated with alterations in ZNF711. The intellectual disability is typically mild and coexisting autism occurs in half of the cases. Carrier females show no manifestations. A ZNF711-specific methylation signature has been identified which can assist in identifying new cases and in confirming the pathogenicity of variants in the gene.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtorno Autístico/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética
13.
Eur J Hum Genet ; 30(4): 480-484, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33967277

RESUMO

Pulmonary acinar hypoplasia (PAH) and lacrimo-auriculo-dento-digital (LADD) syndrome have both been associated with loss-of-function variants in, or deletions of FGF10. Here we report a multi-generational family with seven members manifesting varying features of LADD syndrome, with one individual dying in early infancy of PAH. Whole genome sequencing in one family member identified a 12,158 bp deletion on chromosome 5p12 that removes two of the three exons of FGF10. Allele-specific PCR demonstrated that all affected family members, including the individual with PAH, carried the 12 kb deletion. We conclude the deletion is pathogenic and expands the mutational spectrum of FGF10 variants in LADD syndrome. The common mechanism underlying the variable clinical features of LADD syndrome is defective terminal branching of salivary and lacrimal glands and pulmonary acini, regulated by the TBX4-FGF10-FGFR2 pathway. The variable phenotypic expressivity of FGF10 haploinsufficiency from relatively benign to lethal is likely due to variation at other genetic loci.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Doenças do Aparelho Lacrimal , Sindactilia , Anormalidades Dentárias , Anormalidades Múltiplas , Éxons , Fator 10 de Crescimento de Fibroblastos/genética , Perda Auditiva , Humanos , Doenças do Aparelho Lacrimal/genética , Sindactilia/genética , Anormalidades Dentárias/genética
14.
Nat Commun ; 12(1): 6298, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728600

RESUMO

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Córtex Cerebral/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neocórtex/citologia , Células-Tronco Neurais/citologia , Neuroglia/metabolismo , Animais , Diferenciação Celular , Córtex Cerebral/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo
15.
Am J Med Genet A ; 185(12): 3814-3820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34254723

RESUMO

Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X-linked filaminopathies caused by a variety of FLNA-variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis-splicing of exon 31 predicting the production of a FLNA-protein with an in-frame-deletion of 16 residues identical to the miss-splicing-effect of the recurrent TODPD c.5217G>A variant. This mis-spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X-inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA-variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy-related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before.


Assuntos
Cardiomiopatias/genética , Filaminas/genética , Dedos/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Deformidades Congênitas dos Membros/genética , Osteocondrodisplasias/genética , Transtornos da Pigmentação/genética , Dedos do Pé/anormalidades , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Pré-Escolar , Feminino , Dedos/patologia , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deformidades Congênitas dos Membros/complicações , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/patologia , Fenótipo , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Deleção de Sequência/genética , Dedos do Pé/patologia , Inativação do Cromossomo X/genética
16.
Am J Med Genet A ; 185(12): 3675-3682, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272929

RESUMO

Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.


Assuntos
Filaminas/genética , Testa/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Osteocondrodisplasias/genética , Criança , Cicatriz/complicações , Cicatriz/genética , Cicatriz/fisiopatologia , Éxons/genética , Testa/fisiopatologia , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Variação Genética/genética , Humanos , Lactente , Queloide/complicações , Queloide/genética , Queloide/fisiopatologia , Mutação com Perda de Função/genética , Masculino , Mutação/genética , Osteocondrodisplasias/fisiopatologia , Linhagem , Fenótipo , Fosforilação/genética , Uretra/anormalidades , Uretra/fisiopatologia
17.
Hum Mutat ; 42(8): 1030-1041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082468

RESUMO

PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.


Assuntos
Caderinas , Epilepsia , Caderinas/genética , Humanos , Mutação de Sentido Incorreto , Protocaderinas , Análise de Sequência de DNA
18.
Genes (Basel) ; 12(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916386

RESUMO

Spondylocarpotarsal synostosis syndrome (SCT) is characterized by vertebral fusions, a disproportionately short stature, and synostosis of carpal and tarsal bones. Pathogenic variants in FLNB, MYH3, and possibly in RFLNA, have been reported to be responsible for this condition. Here, we present two unrelated individuals presenting with features typical of SCT in which Sanger sequencing combined with whole genome sequencing identified novel, homozygous intragenic deletions in FLNB (c.1346-1372_1941+389del and c.3127-353_4223-1836del). Both deletions remove several consecutive exons and are predicted to result in a frameshift. To our knowledge, this is the first time that large structural variants in FLNB have been reported in SCT, and thus our findings add to the classes of variation that can lead to this disorder. These cases highlight the need for copy number sensitive methods to be utilized in order to be comprehensive in the search for a molecular diagnosis in individuals with a clinical diagnosis of SCT.


Assuntos
Anormalidades Múltiplas/etiologia , Filaminas/genética , Deleção de Genes , Vértebras Lombares/anormalidades , Doenças Musculoesqueléticas/etiologia , Mutação , Escoliose/congênito , Sinostose/etiologia , Vértebras Torácicas/anormalidades , Anormalidades Múltiplas/patologia , Adulto , Criança , Feminino , Humanos , Vértebras Lombares/patologia , Masculino , Doenças Musculoesqueléticas/patologia , Linhagem , Escoliose/etiologia , Escoliose/patologia , Síndrome , Sinostose/patologia , Vértebras Torácicas/patologia
19.
Eur J Hum Genet ; 29(3): 396-401, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32879452

RESUMO

Germline pathogenic variants in AMER1 cause osteopathia striata with cranial sclerosis (OSCS: OMIM 300373), an X-linked sclerosing bone disorder. Female heterozygotes exhibit metaphyseal striations in long bones, macrocephaly, cleft palate, and, occasionally, learning disability. Male hemizygotes typically manifest the condition as fetal or neonatal death. Somatically acquired variants in AMER1 are found in neoplastic tissue in 15-30% of patients with Wilms tumor; however, to date, only one individual with OSCS has been reported with a Wilms tumor. Here we present four cases of Wilms tumor in unrelated individuals with OSCS, including the single previously published case. We also report the first case of bilateral Wilms tumor in a patient with OSCS. Tumor tissue analysis showed no clear pattern of histological subtypes. In Beckwith-Wiedemann syndrome, which has a known predisposition to Wilms tumor development, clinical protocols have been developed for tumor surveillance. In the absence of further evidence, we propose a similar protocol for patients with OSCS to be instituted as an initial precautionary approach to tumor surveillance. Further evidence is needed to refine this protocol and to evaluate the possibility of development of other neoplasms later in life, in patients with OSCS.


Assuntos
Osteosclerose/genética , Fenótipo , Tumor de Wilms/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Pré-Escolar , Feminino , Mutação em Linhagem Germinativa , Humanos , Lactente , Osteosclerose/complicações , Osteosclerose/patologia , Proteínas Supressoras de Tumor/genética , Tumor de Wilms/etiologia , Tumor de Wilms/patologia , Adulto Jovem
20.
Am J Med Genet A ; 185(4): 1317-1320, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33372358

RESUMO

A Sri Lankan male child with supraorbital hyperostosis, broad nasal bridge, small mandible, severe kyphoscoliosis, distal joint contractures of the hands and long second and third toes is described. A hemizygous pathogenic variant in exon 22 of the filamin A (FLNA) gene [NM_001110556.1: c.3557C>T; which leads to a nonsynonymous substitution of serine by leucine at codon 1186 in the FLNA protein; NP_001104026.1: p.Ser1186Leu] was identified. The clinical features observed in this patient were consistent with the cardinal manifestations seen in frontometaphyseal dysplasia 1 (FMD1). However, characteristic extra skeletal manifestations such as cardiac defects, uropathy, and hearing impairment which have previously been reported in association with this condition were absent in this patient.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Filaminas/genética , Testa/anormalidades , Predisposição Genética para Doença , Osteocondrodisplasias/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Doenças do Desenvolvimento Ósseo/patologia , Criança , Éxons/genética , Testa/patologia , Humanos , Masculino , Micrognatismo/genética , Micrognatismo/patologia , Mutação de Sentido Incorreto/genética , Osteocondrodisplasias/patologia , Fenótipo , Sri Lanka/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...