Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38948819

RESUMO

UCYN-A (Cand. Atelocyanobacterium thalassa) has recently been recognized as a globally-distributed, early stage, nitrogen-fixing organelle (the 'nitroplast') of cyanobacterial origin present in select species of haptophyte algae (e.g., Braarudosphaera bigelowii). Although the nitroplast was recognized as the UCYN-A2 sublineage, it is yet to be confirmed in other sublineages of the algal/UCYN-A complex. We used water samples collected from Halifax Harbour (Bedford Basin, Nova Scotia, Canada) and the offshore Scotian Shelf to further our understanding of B. bigelowii and UCYN-A in the coastal Northwest Atlantic. Sequencing data revealed UCYN-A-associated haptophyte signatures and yielded near-complete metagenome-assembled genomes (MAGs) for UCYN-A1, UCYN-A4, and the plastid of the A4-associated haptophyte. Comparative genomics provided new insights into the pangenome of UCYN-A. The UCYN-A4 MAG is the first genome sequenced from this sublineage and shares ~85% identity with the UCYN-A2 nitroplast. Genes missing in the reduced genome of the nitroplast were also missing in the A4 MAG supporting its likely classification as a nitroplast as well. The UCYN-A1 MAG was found to be nearly 100% identical to the reference genome despite coming from different ocean basins. Time-series data paired with the recurrence of specific microbes in enrichment cultures gave insight into the microbes that frequently co-occur with the algal/UCYN-A complex (e.g., Pelagibacter ubique). Overall, our study expands knowledge of UCYN-A and its host across major ocean basins and investigates their co-occurring microbes in the coastal Northwest Atlantic (NWA), thereby facilitating future studies on the underpinnings of haptophyte-associated diazotrophy in the sea.

2.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37951299

RESUMO

We describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp. nifH variants were dominant, while in Baffin Bay, a Stutzerimonas stutzeri variant was dominant. In comparison, the Canadian Arctic Archipelago (CAA) was characterized by a broader set of dominant variants belonging to Desulfobulbaceae, Desulfuromonadales, Arcobacter sp., Vibrio spp., and Sulfuriferula sp. Although dominant diazotrophs fell within known nifH clusters I and III, only a few of these variants were frequently recovered in a 5-year weekly nifH times series in the coastal NW Atlantic presented herein, notably S. stutzeri and variants belonging to Desulfobacterales and Desulfuromonadales. In addition, the majority of dominant Arctic nifH variants shared low similarity (< 92% nucleotide identities) to sequences in a global noncyanobacterial diazotroph catalog recently compiled by others. We further detected UCYN-A throughout the CAG at low-levels using quantitative-PCR assays. Temperature, depth, salinity, oxygen, and nitrate were most strongly correlated to the Arctic diazotroph diversity observed, and we found a stark division between diazotroph communities of the Labrador Sea versus Baffin Bay and the CAA, hence establishing that a previously unknown biogeographic community division can occur for diazotrophs in the CAG.


Assuntos
Fixação de Nitrogênio , Nitrogênio , Filogenia , Canadá , Reação em Cadeia da Polimerase
3.
Sci Adv ; 9(39): eadh9768, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774025

RESUMO

UCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly nifH and16S rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic. Although UCYN-A was detected every summer/fall, the ability to observe separate ecotypes may be highly dependent on sampling time given intense interannual and weekly variability of ecotype-specific occurrences. Additionally, much of UCYN-A's rarer diversity was populated by short-lived neutral mutational variants, therefore providing insight into UCYN-A's microevolutionary patterns. For instance, rare ASVs exhibited community composition restructuring annually, while also sharing a common connection to a dominant ASV within each ecotype. Our study provides additional perspectives for interpreting UCYN-A intraspecific diversity and underscores the need for high-resolution datasets when deciphering spatiotemporal ecologies within UCYN-A.


Assuntos
Cianobactérias , Haptófitas , Ecótipo , Água do Mar/microbiologia , Fatores de Tempo , Haptófitas/genética , Haptófitas/microbiologia , Cianobactérias/genética
4.
Sci Rep ; 12(1): 15335, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097189

RESUMO

Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.


Assuntos
Ecótipo , Estuários , Bactérias/genética , Ecossistema , Estações do Ano
5.
ISME Commun ; 2(1): 38, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37938666

RESUMO

Microbial observatories can track phytoplankton at frequencies that resolve monthly, seasonal, and multiyear trends in environmental change from short-lived events. Using 4-years of weekly flow cytometry along with chloroplast and cyanobacterial 16S rRNA gene sequence data from a time-series station in the coastal Northwest Atlantic (Bedford Basin, Nova Scotia, Canada), we analyzed temporal observations for globally-relevant genera (e.g., Bolidomonas, Teleaulax, Minidiscus, Chaetoceros, Synechococcus, and Phaeocystis) in an oceanic region that has been recognized as a likely hotspot for phytoplankton diversity. Contemporaneous Scotian Shelf data also collected during our study established that the major phytoplankton within the Bedford Basin were important in the Scotian Shelf during spring and fall, therefore pointing to their broader significance within the coastal Northwest Atlantic (NWA). Temporal trends revealed a subset of indicator taxa along with their DNA signatures (e.g., Eutreptiella and Synechococcus), whose distribution patterns make them essential for timely detection of environmentally-driven shifts in the NWA. High-resolution sampling was key to identifying important community shifts towards smaller phytoplankton under anomalous environmental conditions, while further providing a detailed molecular view of community compositions underpinning general phytoplankton succession within the coastal NWA. Our study demonstrates the importance of accessible coastal time-series sites where high-frequency DNA sampling allows for the detection of shifting baselines in phytoplankton communities.

6.
Genes (Basel) ; 12(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440385

RESUMO

Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) in bivalve mollusks is one of the most notable departures from the paradigm of strict maternal inheritance of mtDNA among metazoans. Recently, work on the Mediterranean mussel Mytilus galloprovincialis suggested that a nucleotide motif in the control region of this species, known as the sperm transmission element (STE), helps protect male-transmitted mitochondria from destruction during spermatogenesis. Subsequent studies found similar, yet divergent, STE motifs in other marine mussels. Here, we extend the in silico search for mtDNA signatures resembling known STEs. This search is carried out for the large unassigned regions of 157 complete mitochondrial genomes from within the Mytiloida, Veneroida, Unionoida, and Ostreoida bivalve orders. Based on a sliding window approach, we present evidence that there are additional putative STE signatures in the large unassigned regions of several marine clams and freshwater mussels with DUI. We discuss the implications of this finding for interpreting the origin of doubly uniparental inheritance in ancestral bivalve mollusks, as well as potential future in vitro and in silico studies that could further refine our understanding of the early evolution of this unusual system of mtDNA inheritance.


Assuntos
Bivalves/genética , Genoma Mitocondrial , Espermatozoides/fisiologia , Animais , DNA Mitocondrial/genética , Padrões de Herança , Masculino
7.
Plants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065394

RESUMO

Eastern Mountain Avens (Geum peckii Pursh, Rosaceae) is a globally rare and endangered perennial plant found only at two coastal bogs within Digby County (Nova Scotia, Canada) and at several alpine sites in the White Mountains of New Hampshire (USA). In Canada, the G. peckii population has declined over the past forty years due in part to habitat degradation. We investigated the culturable foliar fungi present in G. peckii leaves at five locations with varying degrees of human impact within this plant species' Canadian range. Fungal identifications were made using ITS rDNA barcoding of axenic fungal cultures isolated from leaf tissue. Differences in foliar fungal communities among sites were documented, with a predominance of Gnomoniaceae (Class: Sordariomycetes, Phylum: Ascomycota). Habitats with more human impact showed lower endophytic diversities (10-16 species) compared to the pristine habitat (27 species). Intriguingly, several fungi may represent previously unknown taxa. Our work represents a significant step towards understanding G. peckii's mycobiome and provides relevant data to inform conservation of this rare and endangered plant.

8.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903227

RESUMO

Nitrification is a central process of the aquatic nitrogen cycle that controls the supply of nitrate used in other key processes, such as phytoplankton growth and denitrification. Through time series observation and modeling of a seasonally stratified, eutrophic coastal basin, we demonstrate that physical dilution of nitrifying microorganisms by water column mixing can delay and decouple nitrification. The findings are based on a 4-y, weekly time series in the subsurface water of Bedford Basin, Nova Scotia, Canada, that included measurement of functional (amoA) and phylogenetic (16S rRNA) marker genes. In years with colder winters, more intense winter mixing resulted in strong dilution of resident nitrifiers in subsurface water, delaying nitrification for weeks to months despite availability of ammonium and oxygen. Delayed regrowth of nitrifiers also led to transient accumulation of nitrite (3 to 8 µmol · kgsw-1) due to decoupling of ammonia and nitrite oxidation. Nitrite accumulation was enhanced by ammonia-oxidizing bacteria (Nitrosomonadaceae) with fast enzyme kinetics, which temporarily outcompeted the ammonia-oxidizing archaea (Nitrosopumilus) that dominated under more stable conditions. The study reveals how physical mixing can drive seasonal and interannual variations in nitrification through control of microbial biomass and diversity. Variable, mixing-induced effects on functionally specialized microbial communities are likely relevant to biogeochemical transformation rates in other seasonally stratified water columns. The detailed study reveals a complex mechanism through which weather and climate variability impacts nitrogen speciation, with implications for coastal ecosystem productivity. It also emphasizes the value of high-frequency, multiparameter time series for identifying complex controls of biogeochemical processes in aquatic systems.


Assuntos
Nitrificação/genética , Ciclo do Nitrogênio/genética , Nitrosomonadaceae/genética , Água/metabolismo , Amônia/metabolismo , Compostos de Amônio/metabolismo , Archaea/genética , Archaea/metabolismo , Biomassa , Canadá , Desnitrificação/genética , Ecossistema , Humanos , Cinética , Nitratos , Nitritos/metabolismo , Nitrogênio/metabolismo , Nitrosomonadaceae/patogenicidade , Oxirredução , Filogenia , Fitoplâncton/genética , Fitoplâncton/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano
9.
Sci Rep ; 11(1): 3889, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594106

RESUMO

Fungi are an important and understudied component of coastal biomes including sand beaches. Basic biogeographic diversity data are lacking for marine fungi in most parts of the world, despite their important role in decomposition. We examined intertidal fungal communities at several United States (US) Gulf of Mexico sand beach sites using morphology and ITS rDNA terminal restriction fragment length polymorphism (T-RFLP) analyses. Fungal biogeographical patterns from sand beach detritus (wood, emergent plant [mangrove/ saltmarsh], or marine [algae, seagrass]) from Florida, Mississippi, and Texas were investigated using diversity indices and multivariate analyses. Fungal diversity increased with decreasing latitude at our study sites. Substrate type strongly influenced fungal community structure in this region, with different fungal communities on detrital marine versus emergent substrates, as well as detrital marine versus wood substrates. Thirty-five fungi were identified morphologically, including new regional and host records. Of these, 86% were unique to an individual collection (i.e., sampled once from one site). Rarefaction curves from pooled morphological data from all sites estimate the number of samples required to characterize the mycota of each substrate. As sampling occurred before the Deepwater Horizon oil spill (April-2010), our findings contribute pre-oil spill sand beach biodiversity data and marine fungal distribution trends within this economically important oceanographic region.


Assuntos
Biodiversidade , Fungos , Golfo do México , Estações do Ano
10.
Sci Rep ; 10(1): 1087, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974502

RESUMO

In animals, strictly maternal inheritance (SMI) of mitochondria is the rule, but one exception (doubly uniparental inheritance or DUI), marked by the transmission of sex-specific mitogenomes, has been reported in bivalves. Associated with DUI is a frequent modification of the mitochondrial cox2 gene, as well as additional sex-specific mitochondrial genes not involved in oxidative phosphorylation. With the exception of freshwater mussels (for 3 families of the order Unionida), these DUI-associated features have only been shown in few species [within Mytilidae (order Mytilida) and Veneridae (order Venerida)] because of the few complete sex-specific mitogenomes published for these orders. Here, we present the complete sex-specific mtDNAs of two recently-discovered DUI species in two families of the order Venerida, Scrobicularia plana (Semelidae) and Limecola balthica (Tellinidae). These species display the largest differences in genome size between sex-specific mitotypes in DUI species (>10 kb), as well as the highest mtDNA divergences (sometimes reaching >50%). An important in-frame insertion (>3.5 kb) in the male cox2 gene is partly responsible for the differences in genome size. The S. plana cox2 gene is the largest reported so far in the Kingdom Animalia. The mitogenomes may be carrying sex-specific genes, indicating that general mitochondrial features are shared among DUI species.


Assuntos
Bivalves/genética , Animais , Bivalves/metabolismo , DNA Mitocondrial/genética , Feminino , Genoma , Genoma Mitocondrial , Padrões de Herança , Masculino , Mitocôndrias , Mytilidae/classificação , Mytilidae/genética , Filogenia , Especificidade da Espécie
11.
PeerJ ; 6: e5007, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915706

RESUMO

Freshwater mussels (order: Unionida) represent one of the most critically imperilled groups of animals; consequently, there exists a need to establish a variety of molecular markers for population genetics and systematic studies in this group. Recently, two novel mitochondrial protein-coding genes were described in unionoids with doubly uniparental inheritance of mtDNA. These genes are the f-orf in female-transmitted mtDNA and the m-orf in male-transmitted mtDNA. In this study, whole F-type mitochondrial genome sequences of two morphologically similar Lampsilis spp. were compared to identify the most divergent protein-coding regions, including the f-orf gene, and evaluate its utility for population genetic and phylogeographic studies in the subfamily Ambleminae. We also tested whether the f-orf gene is phylogenetically informative at the species level. Our preliminary results indicated that the f-orf gene could represent a viable molecular marker for population- and species-level studies in freshwater mussels.

12.
Fungal Biol ; 121(12): 1011-1024, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29122173

RESUMO

We describe the complete mating-type (MAT) locus for Phialocephala scopiformis Canadian Collection of Fungal Cultures (DAOMC) 229536 - a basal lineage within Vibrisseaceae. This strain is of interest due to its ability to produce the important antiinsectan rugulosin. We also provide some of the first insights into the genome structure and gene inventory of nonclavicipitalean endophytes. Sequence was obtained through shotgun sequencing of the entire P. scopiformis genome, and the MAT locus was then determined by comparing this genomic sequence to known MAT loci within the Phialocephala fortinii s.l.-Acephala applanata species complex. We also tested the relative levels of sequence conservation for MAT genes within Vibrisseaceae (n = 10), as well as within the Helotiales (n = 27). Our results: (1) show a homothallic gene arrangement for P. scopiformis [MAT1-1-1, MAT1-2-1, and MAT1-1-3 genes are present], (2) increase the genomic survey of homothallism within Vibrisseaceae, (3) confirm that P. scopiformis contains a unique S-adenosyl-l-methionine-dependent methyltransferase (SAM-Mtase) gene proximal to its MAT locus, while also lacking a cytoskeleton assembly control protein (sla2) gene, and (4) indicate that MAT1-1-1 is the more useful molecular marker amongst the MAT genes for phylogenetic reconstructions aimed at tracking evolutionary shifts in reproductive strategy and/or MAT loci gene composition within the Helotiales.


Assuntos
Ascomicetos/genética , Endófitos/genética , Genes Fúngicos Tipo Acasalamento , Loci Gênicos , Folhas de Planta/microbiologia , Traqueófitas/microbiologia , Sequência Conservada , DNA Fúngico/química , DNA Fúngico/genética , Ordem dos Genes , Genoma Fúngico , Análise de Sequência de DNA , Homologia de Sequência
13.
Fungal Biol ; 121(3): 212-221, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28215349

RESUMO

Despite the recent surge in mitochondrial (mt) genome sequencing, Kingdom Fungi remains underrepresented with respect to mtDNA. We describe the mt genome of the conifer needle endophyte, Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota). This strain is of interest to the Canadian forestry industry as it produces the anti-insectan compound rugulosin. Sequence was obtained from whole genome shotgun sequencing. Comparison to the only other published Phialocephala mt genome, Phialocephala subalpina, indicates that the suite of common mt genes - cox1-3, cob, nad1-6 and 4L, atp6, 8 and 9, as well as rrnL and rrnS - has retained an identical order. Nad4L remains one of the most conserved mitochondrial genes within Phialocephala. Members of the closely related Phialocephala fortinii s.l. - Acephala appalanata species complex (PAC) share too much sequence similarity to properly resolve lineages using ITS barcoding alone. Using P. scopiformis sequence as an outgroup, we determined ancestral gene states that help confirm clades within Phialocephala. Our results show: (1) the complete mt genome of P. scopiformis, representing the 10th complete mt genome for the order Helotiales (containing >3800 species), and (2) how large-scale genomic patterns, such as mitochondrial gene order, can be used to confirm lineages within fungal species complexes.


Assuntos
Ascomicetos/genética , Endófitos/genética , Genoma Fúngico , Genoma Mitocondrial , Ascomicetos/classificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Endófitos/classificação , Ordem dos Genes , Genes Fúngicos , Filogenia , Análise de Sequência de DNA , Sintenia , Traqueófitas/microbiologia
14.
Genome Biol Evol ; 9(2): 380-397, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204512

RESUMO

Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance.


Assuntos
DNA Intergênico/genética , Pseudogenes , RNA Ribossômico/genética , Animais , Evolução Molecular , Genoma , Humanos , Camundongos
15.
Gene ; 605: 32-42, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28027966

RESUMO

In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , Padrões de Herança , Mytilidae/genética , Motivos de Nucleotídeos , Animais , Evolução Biológica , Feminino , Masculino , Mitocôndrias/genética , Mytilidae/classificação , Conformação de Ácido Nucleico , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...