Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging ; 18: 1536012119885222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736437

RESUMO

BACKGROUND: Clinical glioblastoma treatment mostly focuses on the contrast-enhancing tumor mass. Amino acid positron emission tomography (PET) can detect additional, nonenhancing glioblastoma-infiltrated brain regions that are difficult to distinguish on conventional magnetic resonance imaging (MRI). We combined MRI with perfusion imaging and amino acid PET to evaluate such nonenhancing glioblastoma regions. METHODS: Structural MRI, relative cerebral blood volume (rCBV) maps from perfusion MRI, and α-[11C]-methyl-l-tryptophan (AMT)-PET images were analyzed in 20 patients with glioblastoma. The AMT uptake and rCBV (expressed as tumor to normal [T/N] ratios) were compared in nonenhancing tumor portions showing increased signal on T2/fluid-attenuated inversion recovery (T2/FLAIR) images. RESULTS: Thirteen (65%) tumors showed robust heterogeneity in nonenhancing T2/FLAIR hyperintense areas on AMT-PET, whereas the nonenhancing regions in the remaining 7 cases had homogeneous AMT uptake (low in 6, high in 1). AMT and rCBV T/N ratios showed only a moderate correlation in the nonenhancing regions (r = 0.41, P = .017), but regions with very low rCBV (<0.79 T/N ratio) had invariably low AMT uptake. CONCLUSIONS: The findings demonstrate the metabolic and perfusion heterogeneity of nonenhancing T2/FLAIR hyperintense glioblastoma regions. Amino acid PET imaging of such regions can detect glioma-infiltrated brain for treatment targeting; however, very low rCBV values outside the contrast-enhancing tumor mass make increased AMT uptake in nonenhancing glioblastoma regions unlikely.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imagem Multimodal/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Triptofano/análogos & derivados , Triptofano/química
2.
Neuro Oncol ; 21(2): 264-273, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346623

RESUMO

BACKGROUND: Although glioblastomas are heterogeneous brain-infiltrating tumors, their treatment is mostly focused on the contrast-enhancing tumor mass. In this study, we combined conventional MRI, diffusion-weighted imaging (DWI), and amino acid PET to explore imaging-defined glioblastoma subregions and evaluate their potential prognostic value. METHODS: Contrast-enhanced T1, T2/fluid attenuated inversion recovery (FLAIR) MR images, apparent diffusion coefficient (ADC) maps from DWI, and alpha-[11C]-methyl-L-tryptophan (AMT)-PET images were analyzed in 30 patients with newly diagnosed glioblastoma. Five tumor subregions were identified based on a combination of MRI contrast enhancement, T2/FLAIR signal abnormalities, and AMT uptake on PET. ADC and AMT uptake tumor/contralateral normal cortex (T/N) ratios in these tumor subregions were correlated, and their prognostic value was determined. RESULTS: A total of 115 MRI/PET-defined subregions were analyzed. Most tumors showed not only a high-AMT uptake (T/N ratio > 1.65, N = 27) but also a low-uptake subregion (N = 21) within the contrast-enhancing tumor mass. High AMT uptake extending beyond contrast enhancement was also common (N = 25) and was associated with low ADC (r = -0.40, P = 0.05). Higher AMT uptake in the contrast-enhancing tumor subregions was strongly prognostic for overall survival (hazard ratio: 7.83; 95% CI: 1.98-31.02, P = 0.003), independent of clinical and molecular genetic prognostic variables. Nonresected high-AMT uptake subregions predicted the sites of tumor progression on posttreatment PET performed in 10 patients. CONCLUSIONS: Glioblastomas show heterogeneous amino acid uptake with high-uptake regions often extending into non-enhancing brain with high cellularity; nonresection of these predict the site of posttreatment progression. High tryptophan uptake values in MRI contrast-enhancing tumor subregions are a strong, independent imaging marker for longer overall survival.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Glioblastoma/mortalidade , Glioblastoma/patologia , Imagem Multimodal/métodos , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Tomografia por Emissão de Pósitrons/métodos , Progressão da Doença , Feminino , Seguimentos , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Taxa de Sobrevida , Triptofano/metabolismo
3.
Front Neurol ; 10: 1305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920928

RESUMO

Purpose: Amino acid PET has shown high accuracy for the diagnosis and prognostication of malignant gliomas, however, this imaging modality is not widely available in clinical practice. This study explores a novel end-to-end deep learning framework ("U-Net") for its feasibility to detect high amino acid uptake glioblastoma regions (i.e., metabolic tumor volume) using clinical multimodal MRI sequences. Methods: T2, fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient map, contrast-enhanced T1, and alpha-[11C]-methyl-L-tryptophan (AMT)-PET images were analyzed in 21 patients with newly-diagnosed glioblastoma. U-Net system with data augmentation was implemented to deeply learn non-linear voxel-wise relationships between intensities of multimodal MRI as the input and metabolic tumor volume from AMT-PET as the output. The accuracy of the MRI- and PET-based volume measures to predict progression-free survival was tested. Results: In the augmented dataset using all four MRI modalities to investigate the upper limit of U-Net accuracy in the full study cohort, U-Net achieved high accuracy (sensitivity/specificity/positive predictive value [PPV]/negative predictive value [NPV]: 0.85/1.00/0.81/1.00, respectively) to predict PET-defined tumor volumes. Exclusion of FLAIR from the MRI input set had a strong negative effect on sensitivity (0.60). In repeated hold out validation in randomly selected subjects, specificity and NPV remained high (1.00), but mean sensitivity (0.62), and PPV (0.68) were moderate. AMT-PET-learned MRI tumor volume from this U-net model within the contrast-enhancing volume predicted 6-month progression-free survival with 0.86/0.63 sensitivity/specificity. Conclusions: These data indicate the feasibility of PET-based deep learning for enhanced pretreatment glioblastoma delineation and prognostication by clinical multimodal MRI.

4.
Clin Nucl Med ; 43(3): 176-179, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29261637

RESUMO

Tumor-treating fields (TTFields) therapy is a relatively new treatment approach for malignant gliomas. We evaluated if amino acid PET can detect an objective metabolic response to TTFields therapy in recurrent glioblastomas. PET scanning with alpha[C-11]-methyl-L-tryptophan (AMT) before and 2 to 3 months after the start of TTFields treatment showed an interval decrease of tryptophan uptake in the whole tumor (2 patients) or in a portion of the tumor (1 patient). These data demonstrate that TTFields therapy can induce an early metabolic response in recurrent glioblastoma, and this treatment response can be detected by amino acid PET.


Assuntos
Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Tomografia por Emissão de Pósitrons , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Resultado do Tratamento
5.
J Neurooncol ; 126(2): 317-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514361

RESUMO

Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[(11)C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In ten patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in six. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r = -0.77, p = 0.003). Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioblastoma/metabolismo , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Triptofano/metabolismo , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal
6.
Cancer Imaging ; 15: 10, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26245742

RESUMO

BACKGROUND: To assess gliomas using image-based estimation of cellularity, we utilized isotropic diffusion spectrum imaging (IDSI) on clinically feasible diffusion tensor imaging (DTI) and compared it with amino acid uptake measured by α[(11)C]methyl-L-tryptophan positron emission tomography (AMT-PET). METHODS: In 10 patients with a newly-diagnosed glioma, metabolically active tumor regions were defined in both FLAIR hyperintense areas and based on increased uptake on AMT-PET. A recently developed independent component analysis with a ball and stick model was extended to perform IDSI in clinical DTI data. In tumor regions, IDSI was used to define tumor cellularity which was compared between low and high grade glioma and correlated with the glioma proliferative index. RESULTS: The IDSI-derived cellularity values were elevated in both FLAIR and AMT-PET-derived regions of high-grade gliomas. ROC curve analysis found that the IDSI-derived cellularity can provide good differentiation of low-grade from high-grade gliomas (accuracy/sensitivity/specificity of 0.80/0.80/0.80). . Both apparent diffusion coefficient (ADC) and IDSI-derived cellularity showed a significant correlation with the glioma proliferative index (based on Ki-67 labeling; R = 0.95, p < 0.001), which was particularly strong when the tumor regions were confined to areas with high tryptophan uptake excluding areas with peritumoral edema. CONCLUSION: IDSI-MRI combined with AMT-PET may provide a multi-modal imaging tool to enhance pretreatment assessment of human gliomas by evaluating tumor cellularity and differentiate low-grade form high-grade gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão , Glioma/metabolismo , Glioma/patologia , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Idoso , Celulase , Feminino , Humanos , Imuno-Histoquímica , Masculino , Curva ROC , Triptofano
7.
Neuro Oncol ; 17(9): 1284-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092774

RESUMO

BACKGROUND: Increased tryptophan metabolism via the kynurenine pathway (KP) is a key mechanism of tumoral immune suppression in gliomas. However, details of tryptophan metabolism in meningiomas have not been elucidated. In this study, we evaluated in vivo tryptophan metabolism in meningiomas and compared it with gliomas using α-[(11)C]-methyl-L-tryptophan (AMT)-PET. We also explored expression patterns of KP enzymes in resected meningiomas. METHODS: Forty-seven patients with MRI-detected meningioma (n = 16) and glioma (n = 31) underwent presurgical AMT-PET scanning. Tumoral AMT uptake and tracer kinetic parameters (including K and k3' evaluating unidirectional uptake and trapping, respectively) were measured, correlated with meningioma grade, and compared between meningiomas and gliomas. Patterns of KP enzyme expression were assessed by immunohistochemistry in all meningiomas. RESULTS: Meningioma grade showed a positive correlation with AMT k3' tumor/cortex ratio (r = 0.75, P = .003), and this PET parameter distinguished grade I from grade II/III meningiomas with 92% accuracy. Kinetic AMT parameters could differentiate meningiomas from both low-grade gliomas (97% accuracy by k3' ratios) and high-grade gliomas (83% accuracy by K ratios). Among 3 initial KP enzymes (indoleamine 2,3-dioxygenase 1/2, and tryptophan 2,3-dioxygenase 2 [TDO2]), TDO2 showed the strongest immunostaining, particularly in grade I meningiomas. TDO2 also showed a strong negative correlation with AMT k3' ratios (P = .001). CONCLUSIONS: PET imaging of tryptophan metabolism can provide quantitative imaging markers for differentiating grade I from grade II/III meningiomas. TDO2 may be an important driver of in vivo tryptophan metabolism in these tumors. These results can have implications for pharmacological targeting of the KP in meningiomas.


Assuntos
Cinurenina/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/metabolismo , Meningioma/patologia , Triptofano/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Pessoa de Meia-Idade , Gradação de Tumores , Tomografia por Emissão de Pósitrons , Transdução de Sinais , Triptofano/análogos & derivados , Adulto Jovem
8.
Laryngoscope ; 125(7): 1579-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779913

RESUMO

OBJECTIVES/HYPOTHESIS: External auditory canal (EAC) trauma, although rare, can have significant long-term adverse outcomes. This study aims to investigate the frequency, treatment, and complications of external ear canal injury in association with mandibular and temporal bone trauma. STUDY DESIGN: Retrospective chart review. METHODS: Computed tomography images with mandibular or temporal bone trauma were reviewed for EAC fractures. Patient data were collected from initial presentation and subsequent follow-up clinic visits. RESULTS: Thirty-nine percent of temporal bone fractures and 3.3% of mandible trauma involved the EAC. In particular, 10% of condylar or subcondylar trauma included an EAC fracture (P = 0.0006). One patient sustained bilateral EAC fractures despite an isolated, unilateral condylar fracture. The most common presenting sign was blood in the external auditory canal. Two patients underwent exam under anesthesia and removal of debris and stenting as treatment, whereas 42% of the patients were placed on otic drops and 5% received packing or a stent. Follow-up data were only available for 16% of the patients. Hearing loss from otic capsule involvement or ossicular chain disruption were follow-up complaints, and one patient had persistent canal stenosis. CONCLUSIONS: External auditory canal trauma is present in a significant proportion of mandibular and temporal bone trauma, including both condylar and noncondylar fractures with a higher incidence of condylar fractures. One case was seen with bilateral EAC fractures despite a unilateral mandibular fracture. Complications of these fractures can include hearing loss and canal stenosis; however, additional outpatient follow-up is needed to further elucidate long-term complications and shape treatment recommendations.


Assuntos
Meato Acústico Externo/lesões , Otopatias/etiologia , Fraturas Mandibulares/complicações , Fraturas Cranianas/complicações , Osso Temporal/lesões , Adulto , Otopatias/diagnóstico por imagem , Feminino , Humanos , Masculino , Fraturas Mandibulares/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Fraturas Cranianas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Índices de Gravidade do Trauma , Adulto Jovem
9.
J Radiat Oncol ; 3(2): 131-138, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25414765

RESUMO

OBJECTIVE: Glioblastoma is an infiltrative malignancy that tends to extend beyond the MRI-defined tumor volume. We utilized positron emission tomography (PET) imaging with the radiotracer alpha-[11C]methyl-L -tryptophan (AMT) to develop a reliable high-risk gross tumor volume (HR-GTV) method for delineation of glioblastoma. AMT can detect solid tumor mass and tumoral brain infiltration by increased tumoral tryptophan transport and metabolism via the immunosuppressive kynurenine pathway. METHODS: We reviewed all patients in our database with histologically proven glioblastoma who underwent preoperative AMT-PET scan prior to surgery and chemoradiation. Treated radiotherapy volumes were derived from the simulation CT with MRI fusion. High-GTV with contrast enhanced T1-weighted MRI alone (GTVMRI) was defined as the postoperative cavity plus any residual area of enhancement on postcontrast T1-weighted images. AMT-PET images were retrospectively fused to the simulation CT, and a high-risk GTVs generated by both AMT-PET alone (GTVAMT) was defined using a threshold previously established to distinguish tumor tissue from peritumoral edema. A composite volume of MRI and AMT tumor volume was also created (combination of MRI fused with AMT-PET data; GTVMRI+AMT). In patients with definitive radiographic progression, follow-up MRI demonstrating initial tumor progression was fused with the pretreatment images and a progression volume was contoured. The coverage of the progression volume by GTVMRI, GTVAMT, and GTVMRI+AMT was determined and compared using the Wilcoxon's signed-rank test. RESULTS: Eleven patients completed presurgical AMT-PET scan, seven of whom had progressive disease after initial therapy. GTVMRI (mean, 50.2 cm3) and GTVAMT (mean, 48.9 cm3) were not significantly different. Mean concordance index of the volumes was 39±15 %. Coverage of the initial recurrence volume by HR-GTVMRI (mean, 52 %) was inferior to both GTVAMT (mean, 68 %; p =0.028) and GTVMRI+AMT (mean 73 %; p =0.018). The AMT-PET-exclusive coverage was up to 41 % of the recurrent volume. There was a tendency towards better recurrence coverage with GTVMRI+AMT than with GTVAMT alone (p =0.068). Addition of 5 mm concentric margin around GTVMRI, GTVAMT, and GTVMRI+AMT would have completely covered the initial progression volume in 14, 57, and 71 % of the patients, respectively. CONCLUSION: We found that a GTV defined by AMT-PET produced similar volume, but superior recurrence coverage than the treated standard MRI-determined volume. A prospective study is necessary to fully determine the usefulness of AMT-PET for volume definition in glioblastoma radiotherapy planning.

10.
J Nucl Med ; 55(10): 1605-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25189339

RESUMO

UNLABELLED: α-(11)C-methyl-L-tryptophan (AMT) PET allows evaluation of brain serotonin synthesis and can also track upregulation of the immunosuppressive kynurenine pathway in tumor tissue. Increased AMT uptake is a hallmark of World Health Organization grade III-IV gliomas. Our recent study also suggested decreased frontal cortical AMT uptake in glioma patients contralateral to the tumor. The clinical significance of extratumoral tryptophan metabolism has not been established. In the present study, we investigated clinical correlates of tryptophan metabolic abnormalities in the nontumoral hemisphere of glioma patients. METHODS: Standardized AMT uptake values (SUVs) and the uptake rate constant of AMT (K [mL/g/min], a measure proportional to serotonin synthesis in nontumoral gray matter) were quantified in the frontal and temporal cortex and thalamus in the nontumoral hemisphere in 77 AMT PET scans of 66 patients (41 men, 25 women; mean age ± SD, 55 ± 15 y) with grade III-IV gliomas. These AMT values were determined before treatment in 35 and after treatment in 42 patients and were correlated with clinical variables and survival. RESULTS: AMT uptake in the thalamus showed a moderate age-related increase before treatment (SUV, r = 0.39, P = 0.02) but decrease after treatment (K, r = -0.33, P = 0.057). Women had higher thalamic SUVs before treatment (P = 0.037) and higher thalamic (P = 0.013) and frontal cortical K values (P = 0.023) after treatment. In the posttreatment glioma group, high thalamic SUVs and high thalamocortical SUV ratios were associated with short survival in Cox regression analysis. The thalamocortical ratio remained strongly prognostic (P < 0.01) when clinical predictors, including age, glioma grade, and time since radiotherapy, were entered in the regression model. Long interval between radiotherapy and posttreatment AMT PET as well as high radiation dose affecting the thalamus were associated with lower contralateral thalamic or cortical AMT uptake values. CONCLUSION: These observations provide evidence for altered tryptophan uptake in contralateral cortical and thalamic brain regions in glioma patients after initial therapy, suggesting treatment effects on the serotonergic system. Low thalamic tryptophan uptake appears to be a strong, independent predictor of long survival in patients with previous glioma treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Triptofano/metabolismo , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Cinurenina/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Modelos de Riscos Proporcionais , Serotonina/metabolismo , Triptofano/análogos & derivados
11.
Neuro Oncol ; 16(10): 1373-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24670609

RESUMO

BACKGROUND: Previously, we demonstrated the high accuracy of alpha-[(11)C]methyl-L-tryptophan (AMT) PET for differentiating recurrent gliomas from radiation injury. The present study evaluated the prognostic value of increased AMT uptake in patients with previously treated high-grade glioma. METHODS: AMT-PET was performed in 39 patients with suspected recurrence of World Health Organization grades III-IV glioma following surgical resection, radiation, and chemotherapy. Mean and maximum standardized uptake values (SUVs) and unidirectional AMT uptake (K) were measured in brain regions suspicious for tumor and compared with the contralateral cortex (ie, background). Optimal cutoff thresholds for 1-year survival prediction were determined for each AMT parameter and used for calculating the prognostic value of high (above threshold) versus low (below threshold) values for post-PET overall survival (OS). RESULTS: In univariate analyses, 1-year survival was strongly associated with 3 AMT parameters (SUVmax, SUVmean, and tumor-to-background K-ratio; odds ratios: 21.3-25.6; P ≤ .001) and with recent change in MRI contrast enhancement (odds ratio: 14.7; P = .02). Median OS was 876 days in the low- versus 177 days in the high-AMT groups (log-rank P < .001). In multivariate analyses, all 3 AMT parameters remained strong predictors of survival: high AMT values were associated with unfavorable 1-year survival (binary regression P ≤ .003) and shorter overall survival in the whole group (Cox regression hazard ratios: 5.3-10.0) and in patients with recent enhancement change on MRI as well (hazard ratios: 7.0-9.3; P ≤ .001). CONCLUSION: Increased AMT uptake on PET is highly prognostic for 1-year and overall survival, independent of MRI contrast enhancement and other prognostic factors in patients with a previously treated high-grade glioma.


Assuntos
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Tomografia por Emissão de Pósitrons , Triptofano/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Radioisótopos de Carbono , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/mortalidade , Prognóstico , Análise de Sobrevida , Triptofano/análogos & derivados
12.
Mol Imaging ; 12(5): 327-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23759373

RESUMO

Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI); molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-l-tryptophan (AMT)-positron emission tomography (PET) to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs). Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD]) from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74%) and the tumor/cortex VD ratio had the highest positive predictive value (82%). The combined accuracy of MRI (size of contrast-enhancing lesion) and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Triptofano/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/secundário , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Metástase Neoplásica , Triptofano/farmacocinética
13.
J Nucl Med ; 53(7): 1058-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22653792

RESUMO

UNLABELLED: PET of amino acid transport and metabolism may be more accurate than conventional neuroimaging in differentiating recurrent gliomas from radiation-induced tissue changes. α-(11)C-methyl-l-tryptophan ((11)C-AMT) is an amino acid PET tracer that is not incorporated into proteins but accumulates in gliomas, mainly because of tumoral transport and metabolism via the immunomodulatory kynurenine pathway. The aim of this study was to evaluate the usefulness of (11)C-AMT PET supplemented by tracer kinetic analysis for distinguishing recurrent gliomas from radiation injury. METHODS: Twenty-two (11)C-AMT PET scans were obtained in adult patients who presented with a lesion suggestive of tumor recurrence on conventional MRI 1-6 y (mean, 3 y) after resection and postsurgical radiation of a World Health Organization grade II-IV glioma. Lesional standardized uptake values were calculated, as well as lesion-to-contralateral cortex ratios and 2 kinetic (11)C-AMT PET parameters (volume of distribution [VD], characterizing tracer transport, and unidirectional uptake rate [K]). Tumor was differentiated from radiation-injured tissue by histopathology (n = 13) or 1-y clinical and MRI follow-up (n = 9). Accuracy of tumor detection by PET variables was assessed by receiver-operating-characteristic analysis. RESULTS: All (11)C-AMT PET parameters were higher in tumors (n = 12) than in radiation injury (n = 10) (P ≤ 0.012 in all comparisons). The lesion-to-cortex K-ratio most accurately identified tumor recurrence, with highly significant differences both in the whole group (P < 0.0001) and in lesions with histologic verification (P = 0.006); the area under the receiver-operating-characteristic curve was 0.99. A lesion-to-cortex K-ratio threshold of 1.39 (i.e., a 39% increase) correctly differentiated tumors from radiation injury in all but 1 case (100% sensitivity and 91% specificity). In tumors that were high-grade initially (n = 15), a higher lesion-to-cortex K-ratio threshold completely separated recurrent tumors (all K-ratios ≥ 1.70) from radiation injury (all K-ratios < 1.50) (100% sensitivity and specificity). CONCLUSION: Kinetic analysis of dynamic (11)C-AMT PET images may accurately differentiate between recurrent World Health Organization grade II-IV infiltrating gliomas and radiation injury. Separation of unidirectional uptake rates from transport can enhance the differentiating accuracy of (11)C-AMT PET. Applying the same approach to other amino acid PET tracers might also improve their ability to differentiate recurrent gliomas from radiation injury.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Lesões por Radiação/diagnóstico por imagem , Compostos Radiofarmacêuticos , Triptofano/análogos & derivados , Adulto , Idoso , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diagnóstico Diferencial , Feminino , Fluordesoxiglucose F18 , Glioma/metabolismo , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Curva ROC , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Padrões de Referência , Reprodutibilidade dos Testes , Triptofano/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...