Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 205: 125-133, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972926

RESUMO

Mixing is the driver for the energy footprint of water resource recovery in lagoons. With the availability of solar-powered equipment, one potential measure to decrease the environmental impacts of treatment is to transition to an off-the-grid treatment. We studied the comparative scenarios of an existing grid-powered mixer and a solar-powered mixer. Testing was conducted to monitor the water quality, and to guarantee that the effluent concentrations were maintained equally between the two scenarios. Meanwhile, the energy consumption was recorded with the electrical energy monitor by the wastewater treatment utility, and the carbon emission changes were calculated using the emission intensity of the power utility. The results show that after the replacement, both energy usage and energy costs were significantly reduced, with the energy usage having decreased by 70% and its cost by 47%. Additionally, carbon-equivalent emission from electricity importation dropped by 64%, with an effect on the overall carbon emissions (i.e., including all other contributions from the process) decreasing from 3.8% to 1.5%.


Assuntos
Pegada de Carbono , Energia Solar , Carbono , Eletricidade
2.
Environ Sci Technol ; 50(22): 12166-12178, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27804303

RESUMO

The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO2) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO2-emission-potential m-3 wastewater treated). By including fossil CO2, total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO2 should be analyzed for each WRRF and not omitted from GHG accounting.


Assuntos
Carbono , Recursos Hídricos , Dióxido de Carbono , Mudança Climática , Fósseis , Efeito Estufa , Esgotos
3.
J Exp Biol ; 217(Pt 21): 3898-909, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189374

RESUMO

The aerodynamics of flapping flight for the smallest insects such as thrips is often characterized by a 'clap and fling' of the wings at the end of the upstroke and the beginning of the downstroke. These insects fly at Reynolds numbers (Re) of the order of 10 or less where viscous effects are significant. Although this wing motion is known to augment the lift generated during flight, the drag required to fling the wings apart at this scale is an order of magnitude larger than the corresponding force acting on a single wing. As the opposing forces acting normal to each wing nearly cancel during the fling, these large forces do not have a clear aerodynamic benefit. If flight efficiency is defined as the ratio of lift to drag, the clap and fling motion dramatically reduces efficiency relative to the case of wings that do not aerodynamically interact. In this paper, the effect of a bristled wing characteristic of many of these insects was investigated using computational fluid dynamics. We performed 2D numerical simulations using a porous version of the immersed boundary method. Given the computational complexity involved in modeling flow through exact descriptions of bristled wings, the wing was modeled as a homogeneous porous layer as a first approximation. High-speed video recordings of free-flying thrips in take-off flight were captured in the laboratory, and an analysis of the wing kinematics was performed. This information was used for the estimation of input parameters for the simulations. Compared with a solid wing (without bristles), the results of the study show that the porous nature of the wings contributes largely to drag reduction across the Re range explored. The aerodynamic efficiency, calculated as the ratio of lift to drag coefficients, was larger for some porosities when compared with solid wings.


Assuntos
Voo Animal/fisiologia , Modelos Biológicos , Tisanópteros/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Gravação em Vídeo , Asas de Animais/anatomia & histologia
4.
Water Res ; 47(14): 5189-99, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863383

RESUMO

Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters.


Assuntos
Água Doce/química , Fotoquímica , Benzofenonas/química , California , Clorofila , Clorofila A , Lasers , Lignina/química , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Fotólise , Plantas/química , Rios/química , Ácido Sórbico/química , Espectrometria de Fluorescência/métodos , Taninos/química , Áreas Alagadas
5.
Biol Lett ; 6(3): 422-5, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20181557

RESUMO

Free-flight body dynamics and wing kinematics were collected from recordings of continuous, low-speed, multi-wingbeat yaw turns in hawkmoths (Manduca sexta) using stereo videography. These data were used to examine the effects of rotational damping arising from interactions between the body rotation and flapping motion (flapping counter-torque, FCT) on continuous turning. The moths were found to accelerate during downstroke, then decelerate during upstroke by an amount consistent with FCT damping. Wing kinematics related to turning were then analysed in a simulation of hawkmoth flight; results were consistent with the observed acceleration-deceleration pattern. However, an alternative wing kinematic which produced more continuous and less damped accelerations was found in the simulation. These findings demonstrate that (i) FCT damping is detectable in the dynamics of continuously turning animals and (ii) FCT-reducing kinematics do exist but were not employed by turning moths, possibly because within-wingbeat damping simplifies control of turning by allowing control systems to target angular velocity rather than acceleration.


Assuntos
Voo Animal/fisiologia , Manduca/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Metabolismo Energético/fisiologia , Masculino , Manduca/anatomia & histologia , Movimento/fisiologia , Músculos/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Gravação em Vídeo , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...