Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38826096

RESUMO

BACKGROUND: Corticobasal syndrome is a clinical diagnosis and common pathological causes are corticobasal degeneration, progressive supranuclear palsy and Alzheimer's disease. OBJECTIVES: We would like to highlight a rare but important differential of corticobasal syndrome. METHODS: A 78-year-old female had a 4-year history of predominantly right-hand rest tremor, worsening of handwriting but no change in cognition. The clinical examination showed right upper limb postural and kinetic tremor, mild wrist rigidity and reduced amplitude of right-sided finger tapping. She was initially diagnosed as idiopathic Parkinson's disease. Five years after onset of symptoms, she demonstrated bilateral myoclonic jerks and right upper limb dystonic posturing. She could not copy movements with the right hand. The magnetic resonance imaging (MRI) revealed disproportionate atrophy in the parietal lobes bilaterally. The clinical diagnosis was changed to probable corticobasal syndrome. She passed away 11 years from onset of symptoms at the age of 85 years. She underwent a post-mortem. RESULTS: The anterior and posterior frontal cortex, anterior cingulate, temporal neocortex, hippocampus and amygdaloid complex demonstrated considerable tau-related pathology consisting of a dense background of neuropil threads, and rounded, paranuclear neuronal inclusions consistent with Pick bodies. The immunostaining for three microtubule binding domain repeats (3R) tau performed on sections from the frontal and temporal lobes, basal ganglia and midbrain highlighted several inclusions whilst no 4R tau was observed. She was finally diagnosed with Pick's disease. CONCLUSIONS: Pick's disease can rarely present with clinical features of corticobasal syndrome.

2.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Feminino , Humanos , Masculino , Estudos de Associação Genética , Haplótipos , Doença de Pick/genética , Proteínas tau/genética
3.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687825

RESUMO

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Assuntos
Hipocampo , Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Humanos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Camundongos , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Via de Sinalização Hippo , Serina-Treonina Quinase 3 , Transdução de Sinais , Memória/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Fosforilação , Neurônios/metabolismo
4.
J Alzheimers Dis ; 98(4): 1457-1466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38552117

RESUMO

Background: While mid-life hypertension represents a risk factor for the development of Alzheimer's disease (AD), the risk after the age of 65 is less certain. Establishing relationships between late life hypertension and the pathological changes of AD could be crucial in understanding the relevance of blood pressure as a risk factor for this disorder. Objective: We investigated associations between self-reported late-life hypertension, cognitive status and AD pathology at death. The impact of antihypertensive medication was also examined. Methods: Using the Cornell Medical Index questionnaire, we ascertained whether participants had ever reported hypertension. We also noted use of antihypertensive medication. The donated brains of 108 individuals were assessed for AD pathology using consensus guidelines. Statistical analysis aimed to elucidate relationships between hypertension and AD pathology. Results: We found no associations between self-reported hypertension and cognitive impairment at death. However, those with hypertension were significantly more likely to exhibit lower levels of AD pathology as measured by Thal phase, Braak stage, CERAD score, and NIA-AA criteria-even after controlling for sex, level of education and presence of APOEɛ4 allele(s). No significant associations could be found when examining use of antihypertensive medications. Conclusions: Our findings suggest that late-life hypertension is associated with less severe AD pathology. We postulate that AD pathology may be promoted by reduced cerebral blood flow.


Assuntos
Doença de Alzheimer , Hipertensão , Humanos , Doença de Alzheimer/patologia , Autorrelato , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Cognição
5.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528004

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Assuntos
Doença de Alzheimer , Autofagia , Proteínas Cromossômicas não Histona , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Autofagia/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Brain Pathol ; : e13243, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270230

RESUMO

Formalin-fixed paraffin-embedded (FFPE) brain tissue held in tissue banks constitutes a valuable research resource, especially when associated with clinical annotations and longitudinal psychometric testing. Apolipoprotein-E (APOE) genotyping is important to fully characterise this resource, however older FFPE tissue may not be suitable for genotyping. We performed polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assays on DNA extracted from post-mortem FFPE brain tissue ranging from 2-19 years old. A maximum of three years in paraffin was determined for robust APOE genotyping of FFPE tissue using PCR-RFLP which may suggest prolonged storage of fixed tissue as FFPE blocks may have deleterious effects on DNA.

8.
Brain Pathol ; : e13219, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37927160

RESUMO

A 70-year-old man presented to the clinic with impairment of visual memory and marked predominantly right sided mesial temporal lobe atrophy on imaging. He died 6 years following symptom onset and neuropathological examination showed concomitant progressive supranuclear palsy and Lewy body pathology. Although he did not fulfil clinical criteria for either condition at presentation, we propose that interactions between the two pathologies in mesial temporal regions could result in this atypical clinical phenotype.

9.
Brain ; 146(12): 4988-4999, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904205

RESUMO

Pathological tau accumulates in the brain in tauopathies such as Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration, and forms amyloid-like filaments incorporating various post-translational modifications (PTMs). Cryo-electron microscopic (cryo-EM) studies have demonstrated that tau filaments extracted from tauopathy brains are characteristic of the disease and share a common fold(s) in the same disease group. Furthermore, the tau PTM profile changes during tau pathology formation and disease progression, and disease-specific PTMs are detected in and around the filament core. In addition, templated seeding has been suggested to trigger pathological tau amplification and spreading in vitro and in vivo, although the molecular mechanisms are not fully understood. Recently, we reported that the cryo-EM structures of tau protofilaments in SH-SY5Y cells seeded with patient-derived tau filaments show a core structure(s) resembling that of the original seeds. Here, we investigated PTMs of tau filaments accumulated in the seeded cells by liquid chromatography/tandem mass spectrometry and compared them with the PTMs of patient-derived tau filaments. Examination of insoluble tau extracted from SH-SY5Y cells showed that numerous phosphorylation, deamidation and oxidation sites detected in the fuzzy coat in the original seeds were well reproduced in SH-SY5Y cells. Moreover, templated tau filament formation preceded both truncation of the N-/C-terminals of tau and PTMs in and around the filament core, indicating these PTMs may predominantly be introduced after the degradation of the fuzzy coat.


Assuntos
Doença de Alzheimer , Neuroblastoma , Tauopatias , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Tauopatias/patologia
10.
Genes (Basel) ; 14(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37761892

RESUMO

The impact of environmental factors on epigenetic changes is well established, and cellular function is determined not only by the genome but also by interacting partners such as metabolites. Given the significant impact of metabolism on disease progression, exploring the interaction between the metabolome and epigenome may offer new insights into Huntington's disease (HD) diagnosis and treatment. Using fourteen post-mortem HD cases and fourteen control subjects, we performed metabolomic profiling of human postmortem brain tissue (striatum and frontal lobe), and we performed DNA methylome profiling using the same frontal lobe tissue. Along with finding several perturbed metabolites and differentially methylated loci, Aminoacyl-tRNA biosynthesis (adj p-value = 0.0098) was the most significantly perturbed metabolic pathway with which two CpGs of the SEPSECS gene were correlated. This study improves our understanding of molecular biomarker connections and, importantly, increases our knowledge of metabolic alterations driving HD progression.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Huntington , Humanos , Encéfalo/metabolismo , Doença de Huntington/genética , Metaboloma , Metilação , RNA de Transferência/biossíntese , Aminoacil-tRNA Sintetases/genética
11.
Nature ; 620(7975): 898-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532939

RESUMO

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Citrulinação , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/classificação , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Metilação
12.
FEBS Open Bio ; 13(8): 1394-1404, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337995

RESUMO

The formation of amyloid filaments through templated seeding is believed to underlie the propagation of pathology in most human neurodegenerative diseases. A widely used model system to study this process is to seed amyloid filament formation in cultured cells using human brain extracts. Here, we report the electron cryo-microscopy structures of tau filaments from  undifferentiated seeded SH-SY5Y cells that transiently expressed N-terminally HA-tagged 1N3R or 1N4R human tau, using brain extracts from individuals with Alzheimer's disease or corticobasal degeneration. Although the resulting filament structures differed from those of the brain seeds, some degrees of structural templating were observed. Studying templated seeding in cultured cells, and determining the structures of the resulting filaments, can thus provide insights into the cellular aspects underlying neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Neuroblastoma , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Microscopia Crioeletrônica , Neuroblastoma/patologia , Encéfalo/metabolismo , Amiloide
13.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066393

RESUMO

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

15.
Neuropathology ; 42(6): 540-547, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35822248

RESUMO

We report on a patient with atypical parkinsonism due to coexistent Lewy body disease (LBD) and diffuse anaplastic astrocytoma. The patient presented with a mixed cerebellar and parkinsonian syndrome, incomplete levodopa response, and autonomic failure. The clinical diagnosis was multiple system atrophy (MSA). Supportive features of MSA according to the consensus diagnostic criteria included postural instability and early falls, early dysphagia, pyramidal signs, and orofacial dystonia. Multiple exclusion criteria for a diagnosis of idiopathic Parkinson's disease (iPD) were present. Neuropathological examination of the left hemisphere and the whole midbrain and brainstem revealed LBD, neocortical-type consistent with iPD, hippocampal sclerosis, and widespread neoplastic infiltration by an anaplastic astrocytoma without evidence of a space occupying lesion. There were no pathological features of MSA. The classification of atypical parkinsonism was difficult in this patient. The clinical features and disease course were confounded by the coexistent tumor, leading to atypical presentation and a diagnosis of MSA. We suggest that the initial features were due to Lewy body pathology, while progression and ataxia, pyramidal signs, and falls were accelerated by the occurrence of the astrocytoma. Our case reflects the challenges of an accurate diagnosis of atypical parkinsonism, the potential for confounding co-pathology and the need for autopsy examination to reach a definitive diagnosis.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença por Corpos de Lewy/complicações , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Levodopa
16.
Acta Neuropathol ; 143(6): 613-640, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513543

RESUMO

Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.


Assuntos
Doenças Neurodegenerativas , Príons , Animais , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Príons/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
18.
J Dev Orig Health Dis ; 13(3): 367-377, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34308828

RESUMO

Perinatal light exposure predisposes towards health and behaviour in adulthood. Season of birth is associated with psychiatric, allergic, cardiovascular and metabolic problems. It has been proposed that early-life environmental light disrupts the development of biological rhythms which, in turn, influence later-life health. However, the mechanisms linking perinatal seasonal light to later-life biological rhythm and health in humans are unknown. In this study, we investigated the association between season of birth and epigenome-wide DNA methylation of two postmortem human brain regions (16 hypothalamus, 14 temporal cortex). We did not find statistically significant differences at the whole epigenome level, either because we lacked statistical power or that no association exists. However, when we examined 24 CpG sites that had the highest significance or differential methylation, we identified regions which may be associated with circadian rhythm entrainment, cholinergic neurotransmission and neural development. Amongst methylation of the core clock genes, we identified that hypothalamus Neuronal PAS Domain Protein 2 (NPAS2) gene has hypermethylated regions in long photoperiod-born individuals. In addition, we found nominal associations between season of birth and genes linked to chronotype and narcolepsy. Season of birth-related brain DNA methylation profile was different than a previously reported blood methylation profile, suggesting a tissue-specific mechanism of perinatal light programming. Overall, we are the first to analyse the relationship between season of birth and human brain DNA methylation. Further studies with larger sample sizes are required to confirm an imprinting effect of perinatal light on the circadian clock.


Assuntos
Metilação de DNA , Epigenoma , Adulto , Idoso , Encéfalo , Ilhas de CpG , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Parto , Gravidez , Estações do Ano
19.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614107

RESUMO

We investigated the cerebral folate system in post-mortem brains and matched cerebrospinal fluid (CSF) samples from subjects with definite Alzheimer's disease (AD) (n = 21) and neuropathologically normal brains (n = 21) using immunohistochemistry, Western blot and dot blot. In AD the CSF showed a significant decrease in 10-formyl tetrahydrofolate dehydrogenase (FDH), a critical folate binding protein and enzyme in the CSF, as well as in the main folate transporter, folate receptor alpha (FRα) and folate. In tissue, we found a switch in the pathway of folate supply to the cerebral cortex in AD compared to neurologically normal brains. FRα switched from entry through FDH-positive astrocytes in normal, to entry through glial fibrillary acidic protein (GFAP)-positive astrocytes in the AD cortex. Moreover, this switch correlated with an apparent change in metabolic direction to hypermethylation of neurons in AD. Our data suggest that the reduction in FDH in CSF prohibits FRα-folate entry via FDH-positive astrocytes and promotes entry through the GFAP pathway directly to neurons for hypermethylation. This data may explain some of the cognitive decline not attributable to the loss of neurons alone and presents a target for potential treatment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Estudos de Coortes , Encéfalo/metabolismo , Astrócitos/metabolismo , Ácido Fólico/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo
20.
Acta Neuropathol Commun ; 9(1): 201, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961556

RESUMO

Amyloid beta (Aß) is thought to play a critical role in the pathogenesis of Alzheimer's disease (AD). Prion-like Aß polymorphs, or "strains", can have varying pathogenicity and may underlie the phenotypic heterogeneity of the disease. In order to develop effective AD therapies, it is critical to identify the strains of Aß that might arise prior to the onset of clinical symptoms and understand how they may change with progressing disease. Down syndrome (DS), as the most common genetic cause of AD, presents promising opportunities to compare such features between early and advanced AD. In this work, we evaluate the neuropathology and Aß strain profile in the post-mortem brain tissues of 210 DS, AD, and control individuals. We assayed the levels of various Aß and tau species and used conformation-sensitive fluorescent probes to detect differences in Aß strains among individuals and populations. We found that these cohorts have some common but also some distinct strains from one another, with the most heterogeneous populations of Aß emerging in subjects with high levels of AD pathology. The emergence of distinct strains in DS at these later stages of disease suggests that the confluence of aging, pathology, and other DS-linked factors may favor conditions that generate strains that are unique from sporadic AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Síndrome de Down/metabolismo , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA